Math, asked by shiwanigahtori2, 1 day ago

3) root(1-cosx) / root(1+cosx) find dy/dx ..? explain step by step please​

Answers

Answered by kskdollykashyap
1

Step-by-step explanation:

iiwiwuwhejeuejeieheh

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\: \sqrt{\dfrac{1 - cosx}{1 + cosx} }

Let assume that

\rm :\longmapsto\:y =  \sqrt{\dfrac{1 - cosx}{1 + cosx} }

We know that

\boxed{ \tt{ \: 1 - cos2x =  {2sin}^{2}x \: }} \\  \\  \bf \: and \\  \\ \boxed{ \tt{ \: 1 + cos2x =  {2cos}^{2}x \: }} \\

So, using these Identities, we get

\rm :\longmapsto\:y =  \sqrt{\dfrac{ {sin}^{2} \dfrac{x}{2} }{ {cos}^{2} \dfrac{x}{2}} }

\rm :\longmapsto\:y =  \sqrt{ {tan}^{2}\dfrac{x}{2} }

\rm :\longmapsto\:y = tan\dfrac{x}{2}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y =\dfrac{d}{dx} tan\dfrac{x}{2}

We know that

\boxed{ \tt{ \: \dfrac{d}{dx}tanx =  {sec}^{2}x \: }}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} =  {sec}^{2}\dfrac{x}{2} \: \dfrac{d}{dx}\dfrac{x}{2}

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{2} {sec}^{2}\dfrac{x}{2} \: \dfrac{d}{dx} \: x

We know,

\boxed{ \tt{ \: \dfrac{d}{dx}x = 1 \: }}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{2} {sec}^{2}\dfrac{x}{2}  \times 1

 \\ \bf\implies \:\:\dfrac{dy}{dx} = \dfrac{1}{2} {sec}^{2}\dfrac{x}{2}  \\  \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to know :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}\\ \\  \sf  {sin}^{ - 1}x & \sf  \dfrac{1}{ \sqrt{1 -  {x}^{2} } }  \\\\ \sf  {tan}^{ - 1}x  & \sf  \dfrac{1}{1 +  {x}^{2} } \\\\ \sf  {sec}^{ - 1}x & \sf  \dfrac{1}{x \sqrt{ {x}^{2}  - 1} }      \end{array}} \\ \end{gathered}

Similar questions