Math, asked by shloksoni13012006, 8 months ago

3 root 6 - 7 root 2 / 5 root 6 + 2 root 2 rationalise the denominator

Answers

Answered by Anonymous
4

Question

  \rm \: rationalise \: the \: denomintor \: of \: \ =   \dfrac{3 \sqrt{6}  - 7 \sqrt{2} }{5 \sqrt{6}  + 2 \sqrt{2} }

Solution:-

Take

   : \implies \dfrac{3 \sqrt{6}  - 7 \sqrt{2} }{5 \sqrt{6}  + 2 \sqrt{2} }

 : \implies \dfrac{3 \sqrt{6}  - 7 \sqrt{2} }{5 \sqrt{6}  + 2 \sqrt{2} }  \times  \dfrac{5 \sqrt{6} - 2 \sqrt{2}  }{5 \sqrt{6}  - 2 \sqrt{2} }

use this identity

:- ( a - b ) × ( a + b ) = ( a² - b² )

:- ( a - b ) × ( c - d ) = (ac - ad - bc + bd )

Applying this identity

 :  \implies  \dfrac{(3 \sqrt{6}  - 7 \sqrt{2} )(5 \sqrt{6}  - 2 \sqrt{2}) }{(5 \sqrt{6}  + 2 \sqrt{2} )(5 \sqrt{6}  - 2 \sqrt{2}) }

  \rm \:   : \implies \dfrac{3 \sqrt{6} \times 5 \sqrt{6}  - 3 \sqrt{6}   \times 2 \sqrt{2}  - 7 \sqrt{2}  \times 5 \sqrt{6} + 7 \sqrt{2}   \times 2 \sqrt{2} }{(5 \sqrt{6}) {}^{2}  - (2 \sqrt{2}  ) {}^{2} }

 \rm \:  : \implies \dfrac{15 \times 6 - 6 \sqrt{12}  - 35 \sqrt{12} +14 \times 2  }{25 \times 6 - 4 \times 2}

 \rm \:  : \implies  \dfrac{90 - 41 \sqrt{12}  + 28}{142}

  \rm \:  : \implies  \dfrac{118 - 41 \sqrt{12} }{142}

Answer:-

  \rm \:  : \implies  \boxed{ \dfrac{118 - 41 \sqrt{12} }{142} }

Answered by mukeshsharma4365
0

Answer:

hope it will help you...

Attachments:
Similar questions