3/root3-root2 = a roit3 - b root2
Answers
Answer:
Step-by-step explanation:
Rationalising the denominator, we get
Hope this helps
Please mark as brainliest
Answer:
Step-by-step explanation:
\frac{3}{ \sqrt{3} - \sqrt{2} } = a \sqrt{3} - b \sqrt{2}3−23=a3−b2
Rationalising the denominator, we get
= \frac{3}{ \sqrt{ 3} - \sqrt{2} } \times \frac{ \sqrt{3} + \sqrt{2} }{ \sqrt{3} + \sqrt{2} }=3−23×3+23+2
= \frac{3( \sqrt{3} + \sqrt{2} )}{( \sqrt{3} - \sqrt{2} )( \sqrt{3} + \sqrt{2} )}=(3−2)(3+2)3(3+2)
= \frac{3 \sqrt{3} + 3 \sqrt{2} }{ { (\sqrt{3} )}^{2} - {( \sqrt{2}) }^{2} }=(3)2−(2)233+32
= \frac{3 \sqrt{3} + 3 \sqrt{2} }{3 - 2}=3−233+32
= \frac{3 \sqrt{3} + 3 \sqrt{2} }{1}=133+32
= 3 \sqrt{3} + 3 \sqrt{2}=33+32
3 \sqrt{3} + 3 \sqrt{2} = a \sqrt{3} - b \sqrt{2}33+32=a3−b2
a \sqrt{3} = 3 \sqrt{3} \: \: \: \: \: \: \: \: - b \sqrt{2} = 3 \sqrt{2}a3=33−b2=32