Math, asked by Priya1790, 10 months ago

3/root3-root2 = a roit3 - b root2​

Answers

Answered by arvindhan14
15

Answer:

a = 3

b =  - 3

Step-by-step explanation:

 \frac{3}{  \sqrt{3}  -  \sqrt{2} }  = a \sqrt{3}  - b \sqrt{2}

Rationalising the denominator, we get

 =  \frac{3}{ \sqrt{ 3}  -  \sqrt{2} }  \times   \frac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3}  +  \sqrt{2} }

 =  \frac{3( \sqrt{3}  +  \sqrt{2} )}{( \sqrt{3} -  \sqrt{2}  )( \sqrt{3}  +  \sqrt{2} )}

 =  \frac{3 \sqrt{3}  + 3 \sqrt{2} }{ { (\sqrt{3} )}^{2}  -  {( \sqrt{2}) }^{2} }

 =  \frac{3 \sqrt{3}  + 3 \sqrt{2} }{3 - 2}

  = \frac{3 \sqrt{3}  + 3 \sqrt{2} }{1}

 = 3 \sqrt{3}  + 3 \sqrt{2}

3 \sqrt{3}  + 3 \sqrt{2}  = a \sqrt{3}  - b \sqrt{2}

a \sqrt{3}  = 3 \sqrt{3}  \:   \:  \:  \:  \: \:  \:  \: -  b \sqrt{2}  =   3 \sqrt{2}

a = 3 \:  \:  \:  \:  \:  \:  \: b =  - 3

Hope this helps

Please mark as brainliest

Answered by nisharathod0390
0

Answer:

Step-by-step explanation:

\frac{3}{ \sqrt{3} - \sqrt{2} } = a \sqrt{3} - b \sqrt{2}3−23=a3−b2

Rationalising the denominator, we get

= \frac{3}{ \sqrt{ 3} - \sqrt{2} } \times \frac{ \sqrt{3} + \sqrt{2} }{ \sqrt{3} + \sqrt{2} }=3−23×3+23+2

= \frac{3( \sqrt{3} + \sqrt{2} )}{( \sqrt{3} - \sqrt{2} )( \sqrt{3} + \sqrt{2} )}=(3−2)(3+2)3(3+2)

= \frac{3 \sqrt{3} + 3 \sqrt{2} }{ { (\sqrt{3} )}^{2} - {( \sqrt{2}) }^{2} }=(3)2−(2)233+32

= \frac{3 \sqrt{3} + 3 \sqrt{2} }{3 - 2}=3−233+32

= \frac{3 \sqrt{3} + 3 \sqrt{2} }{1}=133+32

= 3 \sqrt{3} + 3 \sqrt{2}=33+32

3 \sqrt{3} + 3 \sqrt{2} = a \sqrt{3} - b \sqrt{2}33+32=a3−b2

a \sqrt{3} = 3 \sqrt{3} \: \: \: \: \: \: \: \: - b \sqrt{2} = 3 \sqrt{2}a3=33−b2=32

Similar questions