Math, asked by valourbgmi, 19 days ago

(.3. Show that (P^~p)^(pvq) is a contra diction.​

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given statement is

\rm \: (p \:  \land \sim \: p) \:  \land \: (p \:  \lor \: q)

Now, Truth Table is as follow

\begin{gathered}\boxed{\begin{array}{c|c|c|c|c|c} \bf p & \bf q& \bf  \sim \: p & \bf p \:  \land \sim \: p& \bf p \:  \lor \: q& \bf (p \:  \land \sim \: p) \:  \land \: (p \:  \lor \: q) \\ \frac{\qquad}{} & \frac{\qquad}{}& \frac{\qquad}{} & \frac{\qquad}{}& \frac{\qquad}{}\\ \sf T & \sf T & \sf F& \sf F& \sf T& \sf F\\ \\\sf T & \sf F & \sf F& \sf F& \sf T& \sf F\\ \\\sf F & \sf T & \sf T& \sf F& \sf T& \sf F\\ \\\sf F & \sf F & \sf T& \sf F& \sf F& \sf F  \end{array}} \\ \end{gathered}

\rm\implies \:(p \:  \land \sim \: p) \:  \land \: (p \:  \lor \: q) \: is \: contradiction

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\begin{gathered}\boxed{\begin{array}{c|c|c|c|c} \bf p & \bf q& \bf p \: \lor \: q& \bf q  \:  \land \: p& \bf  p \:  \to \: q\\ \frac{\qquad}{} & \frac{\qquad}{}& \frac{\qquad}{} & \frac{\qquad}{}& \frac{\qquad}{}\\ \sf T & \sf T & \sf T& \sf T& \sf T\\ \\\sf T & \sf F & \sf T& \sf F& \sf F\\ \\\sf F & \sf T & \sf T& \sf F& \sf T\\ \\\sf F & \sf F & \sf F& \sf F& \sf T  \end{array}} \\ \end{gathered}

Similar questions