Math, asked by puspaarambam, 9 months ago

3. Show that the points (0,-1),(6, 7), (-2,3) and
(8,3) are the vertices of a rectangle Also,
find its area.​

Answers

Answered by amitkumar44481
20

Solution :

Let,

  • A( 0 , -1 )
  • B( 6 , 7 )
  • C( -2 , 3 )
  • D( 8 , 3 )

We have Distance Formula,

 \tt\dagger\:  \:  \:AB =  \sqrt{ {(x_2 - x_1)}^{2}  +  {(y_2 - y_1)}^{2} }

Let's Find, Distance.

\rule{90}1

For Line Segment AB,

 \tt  \longmapsto AB =   \sqrt{ {(6 - 0)}^{2}  +  {(7 + 1)}^{2} }

 \tt\longmapsto AB =   \sqrt{ {6}^{2} +  {8}^{2}  }

 \tt \longmapsto AB =   \sqrt{100}

 \tt\longmapsto AB =  10 \: units.

\rule{90}1

For Line Segment DC,

 \tt\longmapsto DC = \sqrt{ {(8 + 2)}^{2}  +{ (3 - 3) }^{2} }

 \tt\longmapsto DC = \sqrt{ {10}^{2} }

 \tt\longmapsto DC =10 \: units.

\rule{90}1

For Line Segment AD,

 \tt\longmapsto AD = \sqrt{ {(8)}^{2}  +  {(3 + 1)}^{2} }

 \tt\longmapsto AD = \sqrt{64 + 16}

 \tt\longmapsto AD = \sqrt{80}

 \tt\longmapsto AD =4 \sqrt{5}  \: units.

\rule{90}1

For Line segment BC,

 \tt\longmapsto AD = \sqrt{ {( - 2 - 6)}^{2}  +  {(3 - 7)}^{2} }

 \tt\longmapsto AD = \sqrt{ {(8)}^{2} +  {(4)}^{2}  }

 \tt\longmapsto AD = \sqrt{64 + 16}

 \tt\longmapsto AD =4 \sqrt{5}  \: units

Now,

  • AB = DC.
  • AD = BC.

We can Clearly see AB = DC and AD = BC with 90° of Angle, Hence ABCD is a Rectangle.

\rule{200}3

\tt\longmapsto{Area \: of \: Rectangle = L \times B = 10 \times  4\sqrt{5}}.

\tt\longmapsto{Area \: of \: Rectangle = 40\sqrt{5}\: Sq\: unit.}

Therefore, the area of Rectangle be 40√5 sq units.

\rule{90}1

Note : Graph provide above.

Attachments:
Similar questions