3 sin 3A + 2 cos 2A + 5 degree upon 2 cos 3A - sin 2A - 10 degree when a is equals to 20 evaluate
Answers
Sorry for the bad handwriting.
Hope it helps.
PLZ MARK IT AS THE BRAINIEST ANSWER
(3 sin 3A + 2 cos 2A + 5°) / (2 cos 3A - sin 2A - 10° ) = 3√3 + 2√2
Given:
(3 sin 3A + 2 cos 2A + 5°) / (2 cos 3A - sin 2A - 10° )
And A = 20
To find:
Evaluate (3 sin 3A + 2 cos 2A + 5°) / (2 cos 3A - sin 2A - 10° )
Solution:
Given (3 sin 3A + 2 cos 2A + 5°) / (2 cos 3A - sin 2A - 10° )
And A = 20°
Given expression
= (3 sin 3(20) + 2 cos 2(20) + 5°) / (2 cos 3(20) - sin 2(20) - 10° )
= (3 sin 60° + 2 cos 45°) / 2 cos 60° - sin 30°
From trigonometric table
sin 60° = √3/2 and cos 60° = 1/2
sin 45° = 1/√2 and cos 45° = 1/√2
(3 sin 60° + 2 cos 45°) / 2 cos 60° - sin 30°
=
=
=
=
= 3√3 + 2√2
Therefore,
(3 sin 3A + 2 cos 2A + 5°) / (2 cos 3A - sin 2A - 10° ) = 3√3 + 2√2
#SPJ2