Math, asked by shikhar28, 1 year ago

3(sinA-cosA)^4+6(sinA+cosA)^2+4(sin^6 + cos^6)

Answers

Answered by Mmta1234
17
3 (sinA-cosA)4 + 6 (sinA +cosA)2 + 4 (sin6A + cos6A) -13

= 3 (( sinA - cosA )2 )2 + 6 ( sin2 A + cos2 A+ 2sinA cosA ) + 4( (sin2 A )3 + (cos2 A )3 ) -13

= 3 ( sin2 A + cos2 A - 2sinA cosA )2 + 6 (1 + 2sinA cosA ) + 4 ((sin2 A + cos2 A )(sin4 A + cos4 A - sin2 A cos2 A ) -13

= 3(1 - 2sinA cosA )2 + 6 (1+ 2sinAcosA ) + 4( ( sin2 A + cos2 A )2 - 2 sin2 A cos2 A - sin2 A cos2 A ) -13

[as a2 + b2 = (a+b)2 - 2ab]

= 3(1 + 4sin2A cos2A - 4 sinA cosA ) + 6 (1+ 2sinAcosA ) + 4 (1-3sin2 A cos2 A ) -13

= 3+ 12sin2 A cos2 A -12sinA cosA + 6 + 12sinA cosA + 4 - 12 sin2 A cos2 A -13

= 0
Answered by TimeRey
14

Answer:

The following pic is according to the question

Step-by-step explanation:

Attachments:
Similar questions