Math, asked by deadpoolwick20, 9 months ago

3. Solve the IVP using the Laplace transform y' - 2y =4, given that y(0) = 1 *​

Answers

Answered by enggmonika
2

Given: y' - 2y = 4,

           y(0) = 1 (this is initial value)

To find: y(t)

solution:

IVP means initial value Problem

step 1: take Laplace transform for given equation:

           (sY(s) - y(0)) -2Y(s) = 4................................equation -1

     as,  y(0) = 1 (given)

so, put y(0) = 1 in equation -1, we get

           (sY(s) - 1) -2Y(s) = 4

           sY(s) -1- 2Y(s) = 4

            Y(s) (s - 2) - 1 = 4

            Y(s) (s - 2) = 4+1

            Y(s) (s - 2) = 5

            Y(s) = \frac{5}{(s-2)}....................................................................equation -2

step 2: take Laplace inverse of equation -2, we get;

             y(t) = 5 e^{2t}

so the final answer is y(t) = 5 e^{2t}

Answered by pulakmath007
42

\displaystyle\huge\red{\underline{\underline{Solution}}}

WORKING PROCEDURE

The procedure stated below is applied to solve a linear differential equation with constant coefficients by transform method :

1. First the Laplace Transform of both sides of the given linear differential equation

2. Use the given initial conditions

3. Express \overline{y} in terms of s

4. Express this function of s into partial fractions

5. Take the inverse transform in both sides

6. The obtained value of y as a function of t is the desired Solution satisfying the given initial conditions

FORMULA TO BE IMPLEMENTED

1.

The LAPLACE TRANSFORMS of f(t), denoted by L{f(t)} and defined as :

L\{f(t)\} =\displaystyle \int\limits_{0}^{\infty} e^{-st} f(t)\, dt

2.If f '(t) & its first (n-1) derivatives be continuous then

L \{ \:  {f}^{n}(t)  \} =  {s}^{n}   \: \overline{f} \: (s) -  {s}^{n - 1} f(0) - ....... -  {f}^{n - 1} (0)

GIVEN

y' - 2y =4 \:  \: \:  given \:  that \:  \:  y(0) = 1 

TO DETERMINE

To find the value of y

CALCULATION

It is given that

y' - 2y =4

Taking the Laplace Transform of both sides we get

  \displaystyle \: [s \: \overline{y}  - y(0)] - \:  2 \:    \overline{y} =  \frac{4}{s}

 \implies \:   \displaystyle \: s \: \overline{y}  - 1- \:  2 \:    \overline{y} =  \frac{4}{s}

 \implies \:   \displaystyle \: s \: \overline{y}  -  \:  2 \:    \overline{y} =  \frac{4}{s}  + 1

 \implies \:   \displaystyle \:( s \: -   2 \:  )  \overline{y} =  \frac{s + 4}{s}

 \implies \:   \displaystyle   \overline{y} =  \frac{s + 4}{s(s - 2)}   \:  \: .........(1)

Now we are proceeding to the fraction

   \displaystyle     \frac{s + 4}{s(s - 2)}   \:

into partial fractions

Let

   \displaystyle     \frac{s + 4}{s(s - 2)}   \:  \: =  \frac{a}{s}  +  \frac{b}{s - 2}

  \implies \:   \displaystyle     \frac{s + 4}{s(s - 2)}   \:  \: =  \frac{a(s - 2) + bs}{s}

  \implies \:   \displaystyle     \frac{s + 4}{s(s - 2)}   \:  \: =  \frac{(a + b)s - 2a}{s}

Comparing both sides

a + b = 1 \:  \: and \:  \:  - 2a = 4

Now

 - 2a = 4 \:  \: gives \:  \: a \:  =  - 2

From

a + b = 1 \:  \: we \: get

</em></strong><strong><em>b \:  = 1 - a =  1+ 2 = 3

</em></strong><strong><em> </em></strong><strong><em>\</em></strong><strong><em>implies</em></strong><strong><em> </em></strong><strong><em>b \:  =  1+ 2 = 3

So

   \displaystyle     \frac{s + 4}{s(s - 2)}   \:  \: =  \frac{ - 2}{s}  +  \frac{3}{s - 2}

Hence from Equation (1) we get

   \displaystyle   \overline{y} =   \frac{ - 2}{s}  +  \frac{3}{s - 2}

On Inversion

   \displaystyle   y = {L}^{ - 1}  \: (   \frac{ - 2}{s} \:  ) +  {L}^{ - 1}  ( \frac{3}{s - 2} \: )

 \implies \:    \displaystyle   y = - 2 \:  {L}^{ - 1}  \: (   \frac{ 1}{s} \:  ) + 3 \:  {L}^{ - 1}  ( \frac{1}{s - 2} \: )

 \implies \:    \displaystyle   y = -2 \times 1 + 3 \times  {e}^{2t}

  \therefore \:  \:    \displaystyle   y = -2  + 3   {e}^{2t}

Which is the desired result

Hence the required solution is

  \therefore \:  \:    \displaystyle   y = -2  + 3   {e}^{2t}

Similar questions