3 tan theta+cot theta =5 cosec theta
Answers
Answered by
5
We know, sin²θ = 1 - cos²θ use it here,
⇒3(1 - cos²θ) + cos²θ - 5cosθ = 0
⇒3 - 3cos²θ + cos²θ - 5cosθ = 0
⇒2cos²θ + 5cosθ - 3 = 0
⇒2cos²θ + 6cosθ - cosθ - 3 = 0
⇒2cosθ(cosθ + 3) - (cosθ+ 3) = 0
⇒(2cosθ - 1)(cosθ + 3) = 0
⇒cosθ = 1/2 and -3 but cosθ∈[ -1, 1 ] so, cosθ ≠ -3
Hence, cosθ = 1/2 = cosπ/3
θ = 2nπ ± π/3 [ by using general solution of trigonometric ]
Read more on Brainly.in - https://brainly.in/question/2622676#readmore
⇒3(1 - cos²θ) + cos²θ - 5cosθ = 0
⇒3 - 3cos²θ + cos²θ - 5cosθ = 0
⇒2cos²θ + 5cosθ - 3 = 0
⇒2cos²θ + 6cosθ - cosθ - 3 = 0
⇒2cosθ(cosθ + 3) - (cosθ+ 3) = 0
⇒(2cosθ - 1)(cosθ + 3) = 0
⇒cosθ = 1/2 and -3 but cosθ∈[ -1, 1 ] so, cosθ ≠ -3
Hence, cosθ = 1/2 = cosπ/3
θ = 2nπ ± π/3 [ by using general solution of trigonometric ]
Read more on Brainly.in - https://brainly.in/question/2622676#readmore
Rsrao:
fine
Answered by
4
❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤
HEY USER...
HERE IS UR ANS. ......
3tanθ + cotθ = 5cosecθ
as you know,
tanθ = sinθ/cosθ , cotθ = cosθ/sinθ and cosecθ = 1/sinθ use it here,
⇒3tanθ + cotθ = 5cosecθ
⇒3sinθ/cosθ + cosθ/sinθ = 5/sinθ
⇒(3sin²θ + cos²θ)/sinθ.cosθ = 5/sinθ
⇒3sin²θ + cos²θ = 5cosθ
We know, sin²θ = 1 - cos²θ use it here,
⇒3(1 - cos²θ) + cos²θ - 5cosθ = 0
⇒3 - 3cos²θ + cos²θ - 5cosθ = 0
⇒2cos²θ + 5cosθ - 3 = 0
⇒2cos²θ + 6cosθ - cosθ - 3 = 0
⇒2cosθ(cosθ + 3) - (cosθ+ 3) = 0
⇒(2cosθ - 1)(cosθ + 3) = 0
⇒cosθ = 1/2 and -3 but cosθ∈[ -1, 1 ] so, cosθ ≠ -3
Hence, cosθ = 1/2 = cosπ/3
θ = 2nπ ± π/3 [ by using general solution of trigonometric ]
HOPE THIS WILL HELP U...
MRK AS BRAINLIEST
❤❤❤❤❤❤❤❤❤❤❤❤❤
HEY USER...
HERE IS UR ANS. ......
3tanθ + cotθ = 5cosecθ
as you know,
tanθ = sinθ/cosθ , cotθ = cosθ/sinθ and cosecθ = 1/sinθ use it here,
⇒3tanθ + cotθ = 5cosecθ
⇒3sinθ/cosθ + cosθ/sinθ = 5/sinθ
⇒(3sin²θ + cos²θ)/sinθ.cosθ = 5/sinθ
⇒3sin²θ + cos²θ = 5cosθ
We know, sin²θ = 1 - cos²θ use it here,
⇒3(1 - cos²θ) + cos²θ - 5cosθ = 0
⇒3 - 3cos²θ + cos²θ - 5cosθ = 0
⇒2cos²θ + 5cosθ - 3 = 0
⇒2cos²θ + 6cosθ - cosθ - 3 = 0
⇒2cosθ(cosθ + 3) - (cosθ+ 3) = 0
⇒(2cosθ - 1)(cosθ + 3) = 0
⇒cosθ = 1/2 and -3 but cosθ∈[ -1, 1 ] so, cosθ ≠ -3
Hence, cosθ = 1/2 = cosπ/3
θ = 2nπ ± π/3 [ by using general solution of trigonometric ]
HOPE THIS WILL HELP U...
MRK AS BRAINLIEST
❤❤❤❤❤❤❤❤❤❤❤❤❤
Similar questions