Physics, asked by sahilnareshkumar123, 7 months ago

3. The mass of the earth is 6 x 1024 kg and the mass of the moon is 74 ~1022 kg. The distance between the cards
and the moon is 3.84 x 105 km. Calculate the force exerted by the earth on the moon.
Take, G - 6.7 x 10-11Nm2 kg
(CA.S.E. 2014
Herc
my = 6 x 1024 kg​

Answers

Answered by bm363009
0

Answer:

ANSWER

We know the force of attraction between two object is given by the formulaF=

R

2

GMm

=

(3.84×10

8

)

2

6.7×10

−11

×6×10

24

×7.4×10

22

=2.0×10

20

N

Answered by shaktisrivastava1234
14

 \huge  \sf  {\fbox{\fbox{\red{\fbox{Answer:}}}}}

 \huge \bf{Given:-}

\sf {→Mass \: of \: the \: earth,m_1 = 6 \times{{10}^{24} }}

 \sf {→Mass \: of \: the \: moon,m_2 = 7.4\times{{10}^{22} }}

\sf {→Distance \: between \: the \: earth \: and \: moon,r = 3.84\times{{10}^{5} }}

\sf {→Distance \: between \: the \: earth \: and \: moon,r = (3.84\times{{10}^{5} \times 1000)m }}

 \sf {→Distance \: between \: the \: earth \: and \: moon,r = 3.84\times{{10}^{8}m}}

 \huge \bf{To \: find:- }

\sf{⇒Force \: exerted \: to \: one \: body \: to \: another \: body.}

 \huge \bf{Formula \: used: - }

  \leadsto\sf{F =G \times  \frac{m_1 \times m_2}{r^2}  }

 \huge \bf{Concept \: used: - }

  \sf{Gravitational \: constant,G=6.7 \times {10}^{- 11N} N{m}^{2}k  {g}^{ - 2}  }

  \huge\bf{According \: to \: Question:-}

\bf{F = \frac{6.7 \times  {10}^{ - 11}  \times 6 \times  {10}^{24}  \times 7.4 \times  {10}^{22}} {(3.84 \times  {10}^{8} )^{2} } = 2.01 \times  {10}^{20} newtons}

 \sf\longmapsto{2.01 \times  {10}^{20} newtons}

_________________________________________________

Similar questions