Math, asked by veda2914, 3 months ago

3) The total surface of a box is 196 m². If the length and breadth are 8 m and 4 m
respectively. Find the height fo the box?

please help me with this​

Answers

Answered by EliteZeal
84

A n s w e r

 \:\:

G i v e n

 \:\:

  • The total surface of a box is 196 sq. m

  • Length of the box is 8 m

  • Breadth of the box is 4 m

 \:\:

F i n d

 \:\:

  • The height of the box

 \:\:

S o l u t i o n

 \:\:

  • Let the height of box be 'h'

 \:\:

As per the given details we can conclude the box to be a cuboidal box

 \:\:

Thus ,

 \:\:

We know that ,

 \:\:

\underline{ \underline{\bold{\texttt{Total surface area of cuboid :}}}}

 \:\:

➠ A = 2(lb + bh + lh) ⚊⚊⚊⚊ ⓵

 \:\:

Where ,

 \:\:

  • A = Total surface area of cuboid

  • l = Length of cuboid

  • b = Breadth of cuboid

  • h = Height of cuboid

 \:\:

\underline{ \underline{\bold{\texttt{For the given box :}}}}

 \:\:

  • A = 196 sq. m

  • l = 8 m

  • b = 4 m

  • h = h

 \:\:

Putting the above values in ⓵

 \:\:

: ➜ A = 2(lb + bh + lh)

 \:\:

: ➜ 196 = 2(8(4) + 4(h) + 8(h))

 \:\:

: ➜  \sf \dfrac { 196 } { 2 } = (32 + 4h + 8h)

 \:\:

: ➜  \sf 98 = 32 + 12h

 \:\:

: ➜  \sf 12h = 98 - 32

 \:\:

: ➜  \sf 12h = 66

 \:\:

: ➜  \sf h = \dfrac { 66 } { 12 }

 \:\:

: : ➨ h = 5.5 m

 \:\:

  • Hence the height of box is 5.5 m

 \:\:

Additional information

 \:\:

Volume of cuboid

 \:\:

  • l × b × h

 \:\:

Where ,

 \:\:

➻ l = Length of cuboid

➻ b = Breadth of cuboid

➻ h = Height of cuboid

 \:\:

Curved surface are of cuboid

 \:\:

  • 2h(l + b)

 \:\:

Where ,

 \:\:

➻ l = Length of cuboid

➻ b = Breadth of cuboid

➻ h = Height of cuboid

Answered by Ranveerx107
1

 \:\:

G i v e n

 \:\:

  • The total surface of a box is 196 sq. m

  • Length of the box is 8 m

  • Breadth of the box is 4 m

 \:\:

F i n d

 \:\:

  • The height of the box

 \:\:

S o l u t i o n

 \:\:

Let the height of box be 'h'

 \:\:

As per the given details we can conclude the box to be a cuboidal box

 \:\:

Thus ,

 \:\:

We know that ,

 \:\:

\underline{ \underline{\bold{\texttt{Total surface area of cuboid :}}}}

 \:\:

➠ A = 2(lb + bh + lh) ⚊⚊⚊⚊ ⓵

 \:\:

Where ,

 \:\:

A = Total surface area of cuboid

l = Length of cuboid

b = Breadth of cuboid

h = Height of cuboid

 \:\:

\underline{ \underline{\bold{\texttt{For the given box :}}}}

 \:\:

A = 196 sq. m

l = 8 m

b = 4 m

h = h

 \:\:

⟮ Putting the above values in ⓵ ⟯

 \:\:

: ➜ A = 2(lb + bh + lh)

 \:\:

: ➜ 196 = 2(8(4) + 4(h) + 8(h))

 \:\:

: ➜  \sf \dfrac { 196 } { 2 } = (32 + 4h + 8h)

 \:\:

: ➜  \sf 98 = 32 + 12h

 \:\:

: ➜  \sf 12h = 98 - 32

 \:\:

: ➜  \sf 12h = 66

 \:\:

: ➜  \sf h = \dfrac { 66 } { 12 }

 \:\:

: : ➨ h = 5.5 m

 \:\:

  • Hence the height of box is 5.5 m

 \:\:

Similar questions