Math, asked by drpremanandamortho, 9 months ago

3. The volume of the right circular cone is
9856 cu.cm. If the diameter of the base is
28cm. Find the height of the cone?​

Answers

Answered by Anonymous
10

To Find :-

The Height of the Cone .

Given :-

  • Volume of the Cone = 9856 cm³.

  • Diameter of the Cone = 28 cm.

We Know :-

Volume of a Cone :-

\bf{\underline{V = \dfrac{1}{3}\pi r^{2}h}}

Where :-

  • r = Radius of the cone

  • h = Height of the cone

Note :-

The value of π is taken as 22/7.

Concept :-

To find the radius of the base of the cone.

We Know that ,

\Rightarrow \bf{Radius = \dfrac{Diameter}{2}}

Given , Diameter = 28 cm.

Putting the value in the diameter , we get :

\implies \bf{Radius = \dfrac{Diameter}{2}} \\ \\  \implies \bf{Radius = \dfrac{28}{2}} \\ \\ \implies \bf{Radius = 14 cm}

Hence the Radius of the Cone is 14 cm.

Solution :-

Given :-

  • Radius = 14 cm

  • π = 22/7

  • Volume = 9856 cm³

Taken :-

Let the height be h cm.

Now , using the formula for volume of a Cone and Substituting the values in it ,we get :

\bf{V = \dfrac{1}{3}\pi r^{2}h} \\ \\ \\ \implies \bf{9856 = \dfrac{1}{3} \times \dfrac{22}{7} \times 14^{2} \times h} \\ \\ \\ \implies \bf{9856 \times 7 = \dfrac{1}{3} \times 22 \times 14^{2} \times h} \\ \\ \\ \implies \bf{9856 \times 7 \times 3 = 22 \times 196 \times h} \\ \\ \\ \implies \bf{\dfrac{9856 \times 7 \times 3}{22} = 196 h} \\ \\ \\ \implies \bf{\dfrac{68992 \times 3}{22} = 196 h} \\ \\ \\ \implies \bf{3136 \times 3 = 196 h} \\ \\ \\ \implies \bf{\dfrac{9408}{196} = h} \\ \\ \\ \implies \bf{48 cm = h} \\ \\ \\ \therefore \purple{\bf{h = 48 cm}}

Hence, the height of the Cone is 48 cm cm.

Answered by Anonymous
8

 \underline{ \boxed{ \tt cσrrєct \:  quєѕtíσn}}

The volume of the right circular cone is

9856cm³. If the diameter of the base is

28cm.

Find the height of the cone?

 \underline{ \boxed{ \tt αnѕwєr}}

 \tt✹ \red{GIVEN:-}

 \tt❂the \: volume \: of \: cone =  {9856cm}^{3}

 \tt❂diameter \: of \: the \: base = 28cm

 \tt✹ \blue{FIND:-}

 \tt卐  \: Height \:  of \:  cone =?

 \tt✹ \green{SOLUTION:-}

 \tt⤃Radius =  \frac{d}{2}  =  \frac{ \cancel{24}}{ \cancel2}  = 14cm

 \tt↪we \: know \: volume \: of \: cone =  \frac{1}{3}  \pi {r}^{2} h

 \tt now,⇝ \frac{1}{3}  \pi {r}^{2} h = 9856 \\  \tt put \: values \: of \: r = 14cm \: and \:  \pi =  \frac{22}{7}  \\   \tt ⇝ \frac{1}{3}  \times  \frac{22}{7}  \times  {14}^{2}  \times h = 9856   \\ \\ \tt ⇝  \frac{1}{3}  \times  \frac{22}{ \cancel7}  \times   \cancel{14} \times 14 \times h = 9856 \\  \tt⇝ \frac{616}{3} h = 9856 \\ \tt ⇝h =  \frac{ \cancel{9856} \times  3}{ \cancel{616}} \\  \tt ⇝h = 16 \times 3 = 48cm \\  \tt ⇝h = 48cm

 \tt Hence, the \: height \: of \: the \: cone \boxed{ \tt ✆ 48cm ✆ }

Similar questions