Math, asked by jainam12, 1 year ago

3 + under root 6 divided by root 3 + root 2 is equals to a + b root 3 find the value of integers a and b

Answers

Answered by DaAnonymous
26
Hey friend,
Here is the answer you were looking for:
 \frac{3 +  \sqrt{6} }{ \sqrt{3} +  \sqrt{2}  }  = a + b \sqrt{3}  \\  \\ o n \: rationalizing \: the \: denominator \: we \: get \\  \\  =  \frac{3 +  \sqrt{6} }{ \sqrt{3}  +  \sqrt{2} }  \times  \frac{ \sqrt{3}  -  \sqrt{2} }{ \sqrt{3} -  \sqrt{2}  }  \\  \\ using \: the \: identity \\ (a + b)(a - b) =  {a}^{2}  -  {b}^{2}  \\  \\  =  \frac{3 \times  \sqrt{3}  - 3 \times  \sqrt{2} +  \sqrt{6}   \times  \sqrt{3} -  \sqrt{6}   \times  \sqrt{2} }{ {( \sqrt{3} )}^{2} -  {( \sqrt{2} )}^{2}  }  \\  \\  =  \frac{3 \sqrt{3} - 3 \sqrt{2}   +  \sqrt{18}  -  \sqrt{12}  }{3 - 2}  \\  \\  = 3 \sqrt{3}  - 3 \sqrt{2}  +  \sqrt{2 \times 3 \times 3}  -  \sqrt{2 \times 2 \times 3}  \\  \\  = 3 \sqrt{3}  - 3 \sqrt{2}  + 3 \sqrt{2}  - 2 \sqrt{3}  \\  \\  = 1 \sqrt{3}  \\  \\  \sqrt{3}  = a + b \sqrt{3}  \\  \\  a = 0 \\  \\ b = 1


Hope this helps!!!!

Thanks....
☺☺
Similar questions