Math, asked by kapilrao1567, 5 months ago

3/(x^2-5)^2 derivative​

Answers

Answered by aryan073
11

Given :

 \\  \red \bigstar \rm \:  \frac{3}{ {( {x}^{2} - 5) }^{2} }

To Find :

• The derivative of given expression =?

Formula :

Quotient Rule :

Consider a function y=v/x ,in which x >0

By using quotient formula , we get :

  \red \bigstar \boxed{ \sf{ \frac{dy}{dx}  =  \frac{x   \times \frac{d}{dx} v -  \frac{d}{dx}x  \times v }{ {x}^{2} } }}

Solution :

• Consider a function y=f(x) ,

 \\  \bullet \sf \: y =  \frac{3}{ ({ {x}^{2}  - 5)}^{2}  }

Using Quotient rule :

Differentiating both sides with respect to x

 \\  \implies \sf \: y =  \frac{3}{ {( {x}^{2}  - 5)}^{2} }  \\  \\  \\  \implies \sf \:  \frac{dy}{dx}  =  \frac{3}{ {x}^{4}  + 25 - 10 {x}^{2} }  \\  \\  \\  \implies \sf \:  \frac{dy}{dx}  =  \frac{ {x}^{4} + 25 - 10 {x}^{2}  \bigg( \frac{d}{dx} 3 \bigg) - 3  \frac{d}{dx} \bigg( {x}^{4}   + 25 - 10 {x}^{2}  \bigg)}{( { {x}^{4} + 25 - 10 {x}^{2}  )}^{2} }  \\  \\  \\  \implies \sf \:  \frac{dy}{dx}   = \frac{0 - 3(4 {x}^{3} + 0 - 20x) }{ {( {x}^{4} + 25 - 10 {x}^{2}  )}^{2} }  \\  \\  \\  \implies \sf \:  \frac{dy}{dx}  =  \frac{ - 12 {x}^{3}  + 60x}{ { ({x}^{4} + 25 - 10 {x}^{2}  )}^{2} }

The derivative of the given expression is :

 \implies \boxed{ \sf{ \frac{dy}{dx}  =  \frac{ - 12 {x}^{3} + 60x }{ ({ {x}^{4}  + 25 - 10 {x}^{2} )}^{2} } }}

Additional information :

• Consider a function y=f(x) , y=uv then for solving this type of expression we use product rule :

Product Rule:

\red\bigstar\boxed{\sf{\dfrac{dy}{dx}= u \dfrac{d}{dv}v+ v \dfrac{d}{du}u}}

• Consider a function y=v/x then for solving this type of expression we use quotient rule:

Quotient Rule:

\red\bigstar\boxed{\sf{\dfrac{dy}{dx}=\dfrac{x \dfrac{d}{dx}v- v \dfrac{d}{dx}}{x^{2}}}}

Similar questions