Math, asked by devanshi687, 1 year ago

30. if a + b + c = 5 and ab + bc + ca =10, then find the value of a3 + b3 + c3 3abc.

Answers

Answered by amitkumar80811766254
3
15 answerrrrrrrrrrrrrrrrrrrrrrr
Answered by shadowsabers03
2

Answer:

\bold{- 25}

Step-by-step explanation:

a + b + c = 5 \\ \\ (a + b + c)^2 = 5^2 \\ \\ = a^2 + b^2 + c^2 + 2ab + 2bc + 2ac = 25 \\ \\ = a^2 + b^2 + c^2 + 2(ab + bc + ac) = 25 \\ \\ = a^2 + b^2 + c^2 + 2 \times 10 = 25 \\ \\ = a^2 + b^2 + c^2 + 20 = 25 \\ \\ a^2 + b^2 + c^2 = 25 - 20 = 5 \\ \\ \\


 \\ \\ \\ (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ac) = a^3 + b^3 + c^3 - 3abc \\ \\ = (a + b + c)(a^2 + b^2 + c^2 - (ab + bc + ac)) = a^3 + b^3 + c^3 - 3abc \\ \\ = 5(5 - 10) = a^3 + b^3 + c^3 - 3abc \\ \\ = 5 \times (-5) = a^3 + b^3 + c^3 - 3abc \\ \\ = \bold{- 25} = a^3 + b^3 + c^3 - 3abc \\ \\ \\ \therefore\ a^3 + b^3 + c^3 - 3abc = \bold{- 25} \\ \\ \\


\\ \\ \\ Hope\ this\ may\ be\ helpful. \\ \\ Please\ mark\ my\ answer\ as\ the\ \bold{brainliest}\ if\ this\ may\ be\ helpful. \\ \\ Thank\ you.\ Have\ a\ nice\ day. \\ \\ \\ \#adithyasajeevan

Similar questions