30
ind the value of x.
:) (-3)* = -243
Answers
Answer:
The two values of the equations are
x = \frac{121+5\sqrt{143}i}{22}x=
22
121+5
143
i
x = \frac{121-5\sqrt{143}i}{22}x=
22
121−5
143
i
Step-by-step explanation:
As given the equation is written in the form .
\frac{1}{x-3}-\frac{1}{x-8}=\frac{11}{30}
x−3
1
−
x−8
1
=
30
11
Simplify the above equation
30×[(x-8)-(x-3)] = 11[ (x-3)(x-8)]
30× [x-x -8+3] = 11 × (x²-8x-3x+24)
30×[0-5] = 11 × (x² -11x + 24)
-150 = 11x² - 121x + 264
11x² - 121x + 264 + 150 = 0
11x² - 121x + 414 = 0
Now by using the discriment formula
x = \frac{-b\pm\sqrt{b^{2}-4ac}}{2a}x=
2a
−b±
b
2
−4ac
As the general form of the equation is
ax² + bx + c = 0
a = 11 , b = -121 , c = 414
Putting all the values in the formula
x = \frac{-(-121)\pm\sqrt{121^{2}-4\times 11\times 414}}{2\times 11}x=
2×11
−(−121)±
121
2
−4×11×414
x = \frac{121\pm\sqrt{14641-18216}}{22}x=
22
121±
14641−18216
x = \frac{121\pm\sqrt{-3575}}{22}x=
22
121±
−3575
x = \frac{121\pm\sqrt{-3575}}{22}x=
22
121±
−3575
(As i = -1 )
x = \frac{121+5\sqrt{143}i}{22}x=
22
121+5
143
i
x = \frac{121-5\sqrt{143}i}{22}x=
22
121−5
143
i
Explanation:
I hope you got it
follow me for more good explaination.