Math, asked by Tanayakulk12, 3 months ago

Find the zeroes of the following cubic polynomial and verify the relations between zeroes and co-efficient: p(x) = 2x ^ 3 + 9x² +13x + 6​

Answers

Answered by mathdude500
1

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:Let \: f(x) =  {2x}^{3} +  {9x}^{2}  + 13x + 6

Now, we have to find zeroes of f(x).

 \red{\rm :\longmapsto\:Let \: x =  - 1}

\rm :\longmapsto\:f( - 1) =  - 2 + 9 - 13 + 6

\rm :\longmapsto\:f( - 1) =  - 15 + 15

\rm :\longmapsto\:f( - 1) = 0

\bf\implies \:x + 1 \: is \: a \: factor \: of \: f(x).

So, in order to find the remaining factors, we use long division.

\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{}}}&{\underline{\sf{\:\: 2{x}^{2}  + 7x  + 6\:\:}}}\\ {\underline{\sf{x + 1}}}& {\sf{\: {2x}^{3} +  {9x}^{2}  + 13x + 6 \:\:}} \\{\sf{}}& \underline{\sf{\:\: \:  \:   -  2{x}^{3} - 2 {x}^{2}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:\:}} \\ {{\sf{}}}& {\sf{\: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: 7{x}^{2}  + 13x + 6 \:  \:  \:  \:   \:  \:  \:  \:\:}} \\{\sf{}}& \underline{\sf{\:\: \:  \:  \:  - 7{x}^{2}  - 7x  \:  \:  \:  \:  \:  \: \:\:}} \\ {\underline{\sf{}}}& {\sf{\:\: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   6x + 6 \:\:}} \\{\sf{}}& \underline{\sf{\: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: - 6x  -6\:\:}} \\ {\underline{\sf{}}}& {\sf{\:\: \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 0\:\:}}  \end{array}\end{gathered}\end{gathered}\end{gathered}

We know,

\rm :\longmapsto\:Dividend = Divisor \times Quotient + Remainder

\rm :\longmapsto\:f(x) = (x + 1)( {2x}^{2} + 7x + 6)

\rm :\longmapsto\:f(x) = (x + 1)( {2x}^{2} + 4x  + 3x+ 6)

\rm :\longmapsto\:f(x) = (x + 1)(2x(x + 2) + 3(x + 2))

\rm :\longmapsto\:f(x) = (x + 1)(x + 2)(2x + 1)

\bf\implies \:zeroes \: of \: f(x) =  - 1, \:  - 2, \:  - \dfrac{3}{2}

\rm :\longmapsto\:Let \:  \alpha  =  - 1, \:  \beta  =  - 2, \:  \gamma  =  - \dfrac{1}{2}

Now,

Consider,

 \red{\rm :\longmapsto\:S_1 = Sum \: of \: zeroes \: taken \: one \: at \: time}

 \:  \:   \rm \:  =  \:   \: \alpha +   \beta  +  \gamma

 \:  \:   \rm \:  =  \:   \: - 1 - 2 - \dfrac{3}{2}

 \:  \:   \rm \:  =  \:   \: - 3- \dfrac{3}{2}

 \:  \:   \rm \:  =  \:   \:  \dfrac{ - 6 - 3}{2}

 \:  \:   \rm \:  =  \:   \:  \dfrac{  - 9}{2}

 \:  \:   \rm \:  =  \:   \: - \dfrac{coefficient \: of \:  {x}^{2} }{coefficient \: of \:  {x}^{3} }

 \:  \:  \:  \:  \: \red{\bf\implies \: \alpha  +  \beta  +  \gamma  = - \dfrac{coefficient \: of \:  {x}^{2} }{coefficient \: of \:  {x}^{3} } }

Consider,

 \blue{\bf :\longmapsto\:S_2 = Sum \: of \: two \: zeroes \: taken \: at \: time}

 \:  \:   \rm \:  =  \:   \: \alpha  \beta  +  \beta  \gamma +   \gamma  \alpha

 \:  \:   \rm \:  =  \:   \:( - 1)( - 2) + ( - 2)\bigg(\dfrac{ - 3}{2} \bigg) + \bigg(\dfrac{ - 3}{2} \bigg)( - 1)

 \:  \:   \rm \:  =  \:   \:2 + 3 + \dfrac{3}{2}

 \:  \:   \rm \:  =  \:   \:5 + \dfrac{3}{2}

 \:  \:   \rm \:  =  \:   \:\dfrac{10 + 3}{2}

 \:  \:   \rm \:  =  \:   \:\dfrac{13}{2}

 \:  \:   \rm \:  =  \:   \:\dfrac{coefficient \: of \:  {x} }{coefficient \: of \:  {x}^{3} }

 \:  \:  \:  \:  \: \blue{\bf\implies \: \alpha \beta   +  \beta  \gamma  +  \gamma \alpha   = - \dfrac{coefficient \: of \:  {x}}{coefficient \: of \:  {x}^{3} } }

Consider,

 \green{\bf :\longmapsto\:S_3 = Product \: of \: zeroes \: }

 \:  \:   \rm \:  =  \:   \: \alpha  \beta  \gamma

 \:  \:   \rm \:  =  \:   \:( - 1)( - 2)\bigg(\dfrac{ - 1}{2} \bigg)

 \:  \:   \rm \:  =  \:   \: - 3

 \:  \:   \rm \:  =  \:   \: - \dfrac{6}{2}

 \:  \:   \rm \:  =  \:   -  \:\dfrac{constant \: term}{coefficient \: of \:  {x}^{3} }

 \:  \:  \:  \:  \: \green{\bf\implies \: \alpha\beta\gamma  = - \dfrac{constant \: term}{coefficient \: of \:  {x}^{3} } }

Hence, Verified

Similar questions