Math, asked by anantrajusharma, 11 months ago

30 points Question
please solve this
one subQuestion is equal to 10 points
don't dare to answer if u can't ​

Attachments:

Answers

Answered by Swarup1998
1

Question: If \mathrm{cosA=-\frac{12}{13}} and \mathrm{cotB=\frac{24}{7}}, where \mathrm{A} lies in the second quadrant and \mathrm{B} in the third quadrant, find the values of the following:

\small{\mathrm{(i)\:sin(A+B),\:(ii)\:cos(A+B),\:(iii)\:tan(A+B).}}

Solution:

Step 1.

Here, \boxed{\mathrm{cosA=-\frac{12}{13}}}

Remember, \mathrm{sinA} is positive because \mathrm{A} lies in the second quadrant.

\therefore \mathrm{sinA=\sqrt{1-cos^{2}A}}

\Rightarrow \mathrm{sinA=\sqrt{1-\left(-\frac{12}{13}\right)^{2}}}

\Rightarrow \boxed{\mathrm{sinA=\frac{5}{13}}}

Use \mathrm{tan\theta=\frac{sin\theta}{cos\theta}} and remember that \mathrm{tanA} is negative because \mathrm{A} lies in the first quadrant.

Then, \boxed{\mathrm{tanA=-\frac{5}{12}}}

Step 2.

Here, \mathrm{cotB=\frac{24}{7}}

Then \boxed{\mathrm{tanB=\frac{7}{24}}}

Use \mathrm{sin\theta=\frac{perpendicular}{\sqrt{(perpendicular)^{2}+(base)^{2}}}}

Remember, both \mathrm{sinB} and \mathrm{cosB} are negative because \mathrm{B} lies in the third quadrant.

\therefore \mathrm{sinB=-\frac{7}{\sqrt{7^{2}+24^{2}}}}

\Rightarrow \boxed{\mathrm{sinB=-\frac{7}{25}}}

and \mathrm{cosB=-\sqrt{1-sin^{2}B}}

\Rightarrow \mathrm{cosB=-\sqrt{1-\left(-\frac{7}{25}\right)^{2}}}

\Rightarrow \boxed{\mathrm{cosB=-\frac{24}{25}}}

Step 3.

(i)

\therefore \mathrm{sin(A+B)}

=\mathrm{sinA\:cosB+cosA\:sinB}

=\mathrm{\frac{5}{13}\:(-\frac{24}{25})+(-\frac{12}{13})\:(-\frac{7}{25})}

=\mathrm{-\frac{120}{325}+\frac{84}{325}}

=\mathrm{-\frac{36}{325}}

\Rightarrow \boxed{\mathrm{sin(A+B)=-\frac{36}{325}}}

(ii)

\therefore \mathrm{cos(A+B)}

=\mathrm{cosA\:cosB-sinA\:sinB}

=\mathrm{(-\frac{12}{13})\:(-\frac{24}{25})-\frac{5}{13}\:(-\frac{7}{25})}

=\mathrm{\frac{288}{325}+\frac{35}{325}}

=\mathrm{\frac{323}{325}}

\Rightarrow \boxed{\mathrm{cos(A+B)=\frac{323}{325}}}

(iii)

\therefore \mathrm{tan(A+B)}

=\mathrm{\frac{tanA+tanB}{1-tanA\:tanB}}

=\mathrm{\frac{-\frac{5}{12}+\frac{7}{24}}{1-(-\frac{5}{12})\:\frac{7}{24}}}

=\mathrm{\frac{-\frac{1}{8}}{1+\frac{35}{288}}}

=\mathrm{\frac{-\frac{1}{8}}{\frac{323}{288}}}

=\mathrm{-\frac{36}{323}}

\Rightarrow \boxed{\mathrm{tan(A+B)=-\frac{36}{323}}}

Similar questions