31. Find the value of x, if 2^7x÷2^2x =⁵√2^15
Answers
Answered by
2
Step-by-step explanation:
12(x
2
+7x)
2
−8(x
2
+7x)(2x−1)−15(2x−1)
2
=12(x
2
+7x)
2
−18(x
2
+7x)(2x−1)+10(x
2
+7x)(2x−1)
−15(2x−1)
2
=6(x
2
+7x)[2(x
2
+7x)−3(2x−1)]+
5(2x−1)[2(x
2
+7x)+3(2x−1)]
=[2(x
2
+7x)−3(2x−1)][6(x
2
+7x)+5(2x−1)]
=[2x
2
+14x−6x+3][6x
2
+42x+10x−5]
=(2x
2
+8x+3)(6x
2
+52x−5)
∴12(x
2
+7x
2
)
2
−8(x
2
+7x)(2x−1)−15(2x−1)
2
=[2(x
2
+7x)−3(2x−1)][6(x
2
+7x)+5(2x−1)]
=(2x
2
+8x+3)(6x
2
+52x−5)
Answered by
0
Answer:
Find the value of x, if 2^7x÷2^2x =⁵√2^15
Similar questions