31. If the circle x² + y2 +6x-2y+k=0 bisects
the circumference of the circle
x² + y2 + 2x -6y -15 =0 then k=
(1)21 (2)-21 (3) 23 (4)-23
Answers
Answer:
k = -23 ...... option (4)
Use parametric representation of Circle 2, two end points of its diameter will lie on cicle C1. Substitute in equation and get the answer.
Step-by-step explanation:
Circle C1: x²+y²+6x-2y + k = , or , (x+3)² + (y-1)² = 10 - k ---(1)
C2: x²+y²+2x -6y-15=0, or, (x+1)²+(y-3)² = 5² --- (2)
=> Circle C2: x = -1 + 5 Cos θ , y = 3 + 5 Sin θ --- (3) Parametric representation.
C1 intersects C2 at two points A & B (lying on both C1 & C2), where AB is a diameter of C2. The center (-1,3) is the mid point of A & B.
Let A be (-1+5Cosθ, 3+5 Sin θ), then B = (-1-5cosθ, 3-5 Sinθ) ... Easy to get it.
Both lie on C1. So substitute it in (1).
So (2+5 Cos θ)² + (2+5 Sin θ)² = 10-k ---(5)
and, (2-5 Cos θ)² + (2-5 Sin θ)² = 10-k --- (6)
=> 20 (cosθ+sinθ) = - 20 (cosθ+sinθ)
=> Cos θ + sin θ = 0
=> Cosθ = 1/√2 , Sinθ = -1/√2 or, the other way signs reversed.
So points A = (-1+ 5/√2, 3-5/√2) and B = (-1- 5/√2, 3+5/√2)
A lies on C1.
So (2+5/√2)² + (2-5/√2)² = 10-k
=> 33 = 10 - k
=> k = - 23
According to to given question:-
- Consider Circle A1:-
_________________________________________
x²+y²+6x-2y + k = , or , (x+3)² + (y-1)² = 10 - k
- This is equation - (1)
_________________________________________
C2: x²+y²+2x -6y-15=0, or, (x+1)²+(y-3)² = 5²
- This is equation - (2)
_________________________________________
- Circle A2:-
x = -1 + 5 Cos θ and y = 3 + 5 Sin θ
- This is equation - (3)
- This method is called Parametric representation
_________________________________________
- Let this be A1
=(-1+5Cosθ, 3+5 Sin θ)
_________________________________________
- Let this be A2
=(-1-5cosθ, 3-5 Sinθ)
_________________________________________
Substituting values form equation - (1):-
_________________________________________
(2+5 Cos θ)² + (2+5 Sin θ)² = 10-k
- This is equation - (5)
_________________________________________
(2-5 Cos θ)² + (2-5 Sin θ)² = 10-k
- This be equation - (6)
_________________________________________
As per the given steps below:-
_________________________________________
20 (cosθ+sinθ) (=) - 20 (cosθ+sinθ)
_________________________________________
- Cos θ + sin θ = 0
- Cosθ = 1/√2 , Sinθ = -1/√2
_________________________________________
Therefore, The points A equals the below given equations
- (-1+ 5/√2, 3-5/√2)
- B = (-1- 5/√2, 3+5/√2)
- Hence, A lies on C1.
_________________________________________
(2+5/√2)² + (2-5/√2)² = 10-k
33 = 10 - k
k = - 23
_________________________________________
Therefore, the value of [ k = -23]
_________________________________________