Math, asked by kasi2005, 11 months ago

31) If two equal chords of a circle intersect within the circle, prove that the segments of one chord are equal to
corresponding segments of the other chord.​

Answers

Answered by Natsukαshii
2

PLEASE

MARK IT AS A BRAINLIEST ANSWER

PLS SUBSCRIBE MY CHANNEL ON YOUTUBE

ADITHYA 999 NEWS PLS

ANSWER :-}

OM=ON

OM=ONOP is common.

OM=ONOP is common.∠OMP=∠ONP=90

OM=ONOP is common.∠OMP=∠ONP=90 o

OM=ONOP is common.∠OMP=∠ONP=90 o

OM=ONOP is common.∠OMP=∠ONP=90 o △OMP ≅ △ONP (RHS Congruence)

OM=ONOP is common.∠OMP=∠ONP=90 o △OMP ≅ △ONP (RHS Congruence)PM=PN ......................(1)

OM=ONOP is common.∠OMP=∠ONP=90 o △OMP ≅ △ONP (RHS Congruence)PM=PN ......................(1)AM=BM

OM=ONOP is common.∠OMP=∠ONP=90 o △OMP ≅ △ONP (RHS Congruence)PM=PN ......................(1)AM=BM Similarly ,CN=DN

OM=ONOP is common.∠OMP=∠ONP=90 o △OMP ≅ △ONP (RHS Congruence)PM=PN ......................(1)AM=BM Similarly ,CN=DNAs AB=CD

OM=ONOP is common.∠OMP=∠ONP=90 o △OMP ≅ △ONP (RHS Congruence)PM=PN ......................(1)AM=BM Similarly ,CN=DNAs AB=CDAB−AM=CD−DN

OM=ONOP is common.∠OMP=∠ONP=90 o △OMP ≅ △ONP (RHS Congruence)PM=PN ......................(1)AM=BM Similarly ,CN=DNAs AB=CDAB−AM=CD−DNBM=CN .........................(2)

OM=ONOP is common.∠OMP=∠ONP=90 o △OMP ≅ △ONP (RHS Congruence)PM=PN ......................(1)AM=BM Similarly ,CN=DNAs AB=CDAB−AM=CD−DNBM=CN .........................(2)From (1) and (2)

OM=ONOP is common.∠OMP=∠ONP=90 o △OMP ≅ △ONP (RHS Congruence)PM=PN ......................(1)AM=BM Similarly ,CN=DNAs AB=CDAB−AM=CD−DNBM=CN .........................(2)From (1) and (2)BM−PM=CN−PN

OM=ONOP is common.∠OMP=∠ONP=90 o △OMP ≅ △ONP (RHS Congruence)PM=PN ......................(1)AM=BM Similarly ,CN=DNAs AB=CDAB−AM=CD−DNBM=CN .........................(2)From (1) and (2)BM−PM=CN−PNPB=PC

OM=ONOP is common.∠OMP=∠ONP=90 o △OMP ≅ △ONP (RHS Congruence)PM=PN ......................(1)AM=BM Similarly ,CN=DNAs AB=CDAB−AM=CD−DNBM=CN .........................(2)From (1) and (2)BM−PM=CN−PNPB=PCAM=DN (Half the length of equal chords are equal)

OM=ONOP is common.∠OMP=∠ONP=90 o △OMP ≅ △ONP (RHS Congruence)PM=PN ......................(1)AM=BM Similarly ,CN=DNAs AB=CDAB−AM=CD−DNBM=CN .........................(2)From (1) and (2)BM−PM=CN−PNPB=PCAM=DN (Half the length of equal chords are equal)AM+PM=DN+PN

OM=ONOP is common.∠OMP=∠ONP=90 o △OMP ≅ △ONP (RHS Congruence)PM=PN ......................(1)AM=BM Similarly ,CN=DNAs AB=CDAB−AM=CD−DNBM=CN .........................(2)From (1) and (2)BM−PM=CN−PNPB=PCAM=DN (Half the length of equal chords are equal)AM+PM=DN+PNAP=PD

OM=ONOP is common.∠OMP=∠ONP=90 o △OMP ≅ △ONP (RHS Congruence)PM=PN ......................(1)AM=BM Similarly ,CN=DNAs AB=CDAB−AM=CD−DNBM=CN .........................(2)From (1) and (2)BM−PM=CN−PNPB=PCAM=DN (Half the length of equal chords are equal)AM+PM=DN+PNAP=PDTherefore , PB=PC and AP=PD is proved.

OM=ONOP is common.∠OMP=∠ONP=90 o △OMP ≅ △ONP (RHS Congruence)PM=PN ......................(1)AM=BM Similarly ,CN=DNAs AB=CDAB−AM=CD−DNBM=CN .........................(2)From (1) and (2)BM−PM=CN−PNPB=PCAM=DN (Half the length of equal chords are equal)AM+PM=DN+PNAP=PDTherefore , PB=PC and AP=PD is proved.solution

Similar questions