31. If x= h + a cos 0 and y = k + a sin 0, prove that (x - h)2 + (y - k)2 = a2
Answers
Answered by
2
Step-by-step explanation:
Given,
x=h+acosθ
y=k+asinθ
Now,
x−h=acosθ
y−k=asinθ
On squaring and adding we get,
(x−h)
2
+(y−k)
2
=a
2
cos
2
θ+a
2
sin
2
θ
=a
2
(sin
2
θ+cos
2
θ)
=a
2
(1) Since [sin
2
θ+cos
2
θ=1].
Hence proved.
Answered by
0
Answer:
Step-by-step explanation:
Answer
Given,
x=h+acosθ
y=k+asinθ
Now,
x−h=acosθ
y−k=asinθ
On squaring and adding we get,
(x−h)
2
+(y−k)
2
=a
2
cos
2
θ+a
2
sin
2
θ
=a
2
(sin
2
θ+cos
2
θ)
=a
2
(1) Since [sin
2
θ+cos
2
θ=1].
Hence proved.
Similar questions