Math, asked by lksingal01, 8 months ago

33) Prove that
sinA-cosA+1/ sinA+cos A-1=1/secA-tanA
PLEASE guys answer fast l need this question ​

Answers

Answered by Anonymous
38

Solution :

\sf{We \: have,} \\  \\ \sf\blue{LHS}\sf{\:  =  \dfrac{\sin \:  A -  \cos \: A + 1 }{ \sin \: A  +   \cos \:  A -  1} } \\  \\  \implies \sf{ \dfrac{ (\sec \: A  +   \tan \: A ) - 1}{1 -\sec \: A +   \tan \: A }} \\  \\  \implies \sf{ \dfrac{(\sec \: A +   \tan \: A ) -\sec^{2}  \: A +   \tan^{2} \: A}{1 - \sec \: A  +   \tan \: A } } \\  \\  \boxed{\blue{\sf{ \because \: 1 =  \sec^{2}A -  \tan^{2} A}}} \\  \\ \implies \sf{ \dfrac{(\sec \: A  +   \tan \: A ) [1 - (\sec \: A  +   \tan\: A)] }{1 - \sec \: A  +   \tan \: A } }  \\  \\ \implies \sf{ \dfrac{(\sec \: A  +   \tan \: A ) (1 - \sec \: A  +   \tan\: A )}{1 - \sec \: A  +   \tan \: A } } \\  \\ \implies \sf{(\sec \: A  +   \tan \: A )  \times  \dfrac{ \sec \: A - tan \: A }{\sec \: A - tan \: A}} \\  \\  \implies \sf{ \dfrac{sec ^{2} A-  \tan^{2} A}{sec \: A -  \tan \: A } } \\  \\  \implies \sf{ \dfrac{1}{(sec \: A - tan \: A)} } \:  \:  = \blue{RHS} \\  \\  \sf{\boxed{\boxed{\red{LHS = RHS}}}}

Answered by Anonymous
12

Answer :

LHS\:=\:sin\:A\:-\:cos\:A\:+\:1\:/\:sin\:A\:+\:cos\:A\:+\:1

sin\:A\:+\:(\:1\:-\:cos\:A\:)\:/\:sin\:A\:-\:(\:1\:-cos\:A\:)\:×\:sin\:A\:+\:(\:1\:-\:cos\:A\:)\:/\:sin\:A\:+\:(\:1\:-\:cos\:A\:)

sin^2\:A\:+\:(\:1\:-\:cos\:A\:)^2\:+\:2\:sin\:A\:(\:1\:-\:cos\:A\:)\:/\:sin^2\:A\:-\:(\:1\:-\:cos\:A\:)^2

(\:1\:-\:cos^2\:A\:)\:+\:(\:1\:-\:cos\:A^2\:)\:+\:2\:sin\:A\:(\:1\:-\:cos\:A\:)\:/\:(\:1\:-\:cos^2\:A\:)\:-\:(\:1\:-\:cos\:A\:)^2

(\:1\:-\:cos\:A\:)\:[\:1\:+\:cos\:A\:+\:1\:-\:cos\:A\:+\:2\:sin\:A\:]\:/\:(\:1\:-\:cos\:A\:)\:[\:1\:+\:cos\:A\:-\:1\:+\:cos\:A\:]

2\:(\:1\:+\:sin\:A\:)\:/\:2\:cos\:A\:=\:1\:+sin\:A\:/\:cos\:A

sec\:A\:+\:tan\:A

(\:sec\:A\:+\:tan\:A\:)\:(\:sec\:A\:-\:tan\:A\:)\:/\:(\:sec\:A\:-\:tan\:A\:)

sec^2\:A\:-\:tan^2\:A\:/\:sec\:A\:-\:tan\:A

1\:/\:sec\:A\:-\:tan\:=\:RHS

So, It's Done !!

Similar questions