Math, asked by jailorromeo2, 2 months ago

34. Between 1 and 31 m numbers have been inserted in such a way that the
resulting sequence is an AP and the ratio of 7th and (m-1) "" numbers is 5:9.
Find the value of m.​

Answers

Answered by mathdude500
10

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:Let \: A_1,A_2,A_3, -  -  - ,A_m \: be \: m \: numbers

 \rm \: inserted \: between \: 1 \: and \: 31 \: so \: that \: resultant \: series \: is \: AP

So, it implies,

\rm :\longmapsto\:3,A_1,A_2,A_3, -  -  - ,A_m,31 \: are \: in \:AP

We know that,

↝ nᵗʰ term of an arithmetic sequence is,

\rm :\longmapsto\:\begin{gathered}\:\:{\underline{{\boxed{\bf{{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • aₙ is the nᵗʰ term.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

ʜᴇʀᴇ,

  • aₙ = 31

  • a = 1

  • n = m + 2

  • Let d is the common difference.

Thus,

\rm :\longmapsto\:31 = 1 + (m + 2 - 1)d

\rm :\longmapsto\:31 - 1 = (m + 1)d

\bf\implies \:d = \dfrac{30}{m + 1}

According to statement,

\rm :\longmapsto\:\dfrac{A_7}{A_{m - 1}}  = \dfrac{5}{9}

\rm :\longmapsto\:\dfrac{a + 7d}{a + (m - 1)d}  = \dfrac{5}{9}

\rm :\longmapsto\:9a + 63d = 5a + (5m - 5)d

\rm :\longmapsto\:4a = d(5m - 5 - 63)

\rm :\longmapsto\:4 \times 1 = \dfrac{30}{m + 1} (5m - 68)

\rm :\longmapsto\:4m + 4 = 150m - 2040

\rm :\longmapsto\:146m = 2044

\bf\implies \:m \:  =  \: 14

Similar questions