35. A boat goes 30 km upstream and 44 km downstream in 10 hours. In 13 hours, it can go 40 km upstream
and 55 km downstream. Determine the speed of the stream and that of the boat in still water.
Answers
Step-by-step explanation:
Speed of boat be X
Speed of stream be Y
From question
30=(X-Y)10--------> 1
44=(X+Y)10
40=13(X-Y)--------->2
55=13(X+Y)
FROM first set
ADD TWO equation
74=20X
X=3.7km/hr
Hope it helps
Answer:
Speed of stream = 3 km / hr.
Speed of boat in still water = 8 km / hr.
Step-by-step explanation:
Let the speed of the boat in still water be a km / hr and stream be b km / hr
For upstream = a - b
For downstream = a + b
We know :
Speed = Distance / Time
Case 1 .
10 = 30 / a - b + 44 / a + b
Let 1 / a - b = x and 1 / a + b = y
30 x + 44 y = 10 ... ( i )
Case 2 .
13 = 40 / a - b + 55 / a + b
40 x + 55 y = 13 ... ( i )
Multiply by 4 in ( i ) and by 3 in ( ii )
120 x + 176 y = 40
120 x = 40 - 176 y ... ( iii )
120 x + 165 y = 39
120 = 39 - 165 y ... ( iv )
From ( iii ) and ( iv )
40 - 176 y = 39 - 165 y
11 y = 1
y = 1 / 11
120 x = 40 - 176 y
120 x = 40 - 176 / 11
x = 1 / 5
Now :
1 / a - b = 1 / 5
a - b = 5
a = 5 + b ... ( v )
1 / a + b = 1 / 11
a + b = 11
a = 11 - b ... ( vi )
From ( v ) and ( vi )
11 - b = 5 + b
2 b = 6
b = 3
a = 5 + b
a = 5 + 3
a = 8
Hence we get answer.