Math, asked by amitketu, 1 year ago

35. If A = 2i – 3j + 4k, the magnitudes of its components in yz-plane and zx-plane are respectively

please answer​

Answers

Answered by Anonymous
56

Answer:

plz refer to the above attachment...

plz follow me and thank my answers ♡

Regards

Attachments:
Answered by pragyavermav1
4

Concept:

We need to first recall the concept of vector and magnitude of its component to answer this question.

  • Vector is the quantity which has both magnitude and direction.
  • The magnitude of a vector is the length of the vector v denoted by ||v||.

Given:

A vector A = 2i-3j+4k

To find:

The magnitudes of components of vector A in yz- plane and zx-plane.

Solution:

The vector given is:

A = 2i-3j+4k

On comparing with general form A= xi+yj+zk

we get x = 2 , y = -3 and z = 4

Along yz-plane

Magnitude of component is given by : \sqrt{y^{2}+z^{2}}

                                                            = \sqrt{(-3)^{2}+(4)^{2}}

                                                            = \sqrt{9+16}

                                                            = \sqrt{25}

                                                           = 5

Along zx-plane

Magnitude of component is given by : \sqrt{z^{2}+x^{2}}

                                                            = \sqrt{(4)^{2}+(2)^{2}}

                                                            = \sqrt{16+4}

                                                            = \sqrt{20}

                                                            = 2\sqrt{5}

Hence the magnitude along yz plane is 5 and along zx plane is 2\sqrt{5}.

Similar questions