Math, asked by saralamaharajan2402, 5 months ago

35. The sum of third and seventh terms of an AP is 6 and their product is 8. Find

the sum of first sixteen terms of the AP.​

Answers

Answered by THLEGENDARYKING
1

Answer:

Thus, the sum of first 16 terms of the AP is 76 or 20.

Step-by-step explanation:

Let a and d be the first term and common difference of AP

nth term of AP

a  

n

​  

=a+(n−1)d

∴a  

3

​  

=a+(3−1)d=a+2d

a  

7

​  

=a+(7−1)d=a+6d

Given a  

3

​  

+a  

7

​  

=6

∴(a+2d)+(a+6d)=6

⇒2a+8d=6

⇒a+4d=3....(1)

Also given

a  

3

​  

×a  

7

​  

=8

∴(a+2d)(a+6d)=8

⇒(3−4d+2d)(3−4d+6d)=8       [Using (1)]

⇒(3−2d)(3+2d)=8

⇒9−4d  

2

=8

⇒4d  

2

=1

⇒d  

2

=  

4

1

​  

 

⇒d=±  

2

1

​  

 

When d=  

2

1

​  

 

a=3−4d=3−4×  

2

1

​  

=3−2=1

When d=−  

2

1

​  

 

a=3−4d=3+4×  

2

1

​  

=3+2=5

When a=1 & d=  

2

1

​  

 

S  

16

​  

=  

2

16

​  

[2×1+(16−1)×  

2

1

​  

]=8(2+  

2

15

​  

)=4×19=76

When a=5 & d=−  

2

1

​  

 

S  

16

​  

=  

2

16

​  

[2×5+(16−1)×(−  

2

1

​  

)]=8(10−  

2

15

​  

)=4×5=20

Thus, the sum of first 16 terms of the AP is 76 or 20.

Similar questions