Math, asked by mohammednuzair880, 10 months ago

38] P is a point which is equidistant from A (3, 4) and B (5,-2). Find the co-ordinates of P, if the
area of the angle APB = 10 square units.​

Answers

Answered by Anonymous
10

Correct question :-

P is a point which is equidistant from A (3, 4) and B (5,-2). Find the co-ordinates of P, if the area of the ΔAPB is 10 square units.

Solution :-

Given P(x,y) be equidistant from A(3,4) = B(5,-2)

⇒ AP = PB

Using distance formula

 \implies \rm  \sqrt{(x - 3)^{2} + (y - 4)^{2}  }  =  \sqrt{(x - 5)^{2} + (y + 2)^{2}  }

 \implies \rm  \sqrt{x^{2} - 6x + 9 + y^{2}  - 8y + 16 }  =  \sqrt{ {x}^{2}    - 10x + 25+  {y}^{2} + 4y + 4  }

 \implies \rm  \sqrt{x^{2} - 6x  + y^{2}  - 8y + 25 }  =  \sqrt{ {x}^{2}    - 10x +   {y}^{2} + 4y + 29  }

Squaring on both sides

⇒ x² - 6x + y² - 8y + 25 = x² - 10x + y² + 4y + 29

⇒ - 6x - 8y + 25 = - 10x + 4y + 29

⇒ - 6x + 10x - 8y - 4y = 29 - 25

⇒ 4x - 12y = 4

⇒ x - 3y = 1

⇒ x = 1 + 3y -- eq(1)

Area of the Δ APB = 10 sq. units

By using Area of triangle formula

 \implies \rm  Area  \ of \ triangle =  \dfrac{1}{2}  \mid  x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_3) \mid

A(3,4) P(x,y) B(5, - 2)

Here,

  • x1 = 3
  • y1 = 4
  • x2 = x
  • y2 = y
  • x3 = 5
  • y3 = - 2

 \implies \rm  10=  \dfrac{1}{2}  \mid  x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \mid

 \implies \rm  20=  3(y + 2) + x( - 2- 4) + 5(4 - y)

 \implies \rm  20=  3y + 6  - 6x+ 20-5y

⇒ 6x + 2y = 6

⇒ 3x + y = 3

⇒ 3(1 + 3y) + y = 3

[ From eq(1) ]

⇒ 3 + 9y + y = 3

⇒ 10y = 0

⇒ y = 0

Substituting y = 0 in eq(1)

⇒ x = 1 + 3y = 1 + 3(0) = 1

Therefore the coordinates of P are (1,0)

Similar questions