Math, asked by sdk734827, 8 months ago

3825 का अभाज्य गुणनखंड का गुणनफल​

Answers

Answered by sumanrudra22843
3

Step-by-step explanation:

f(x) = kx³ – 8x² + 5

Roots are α – β , α & α +β

Sum of roots = – (-8)/k

Sum of roots = α – β + α + α +β = 3α

= 3α = 8/k

= k = 8/3α

or we can solve as below

f(x) = (x – (α – β)(x – α)(x – (α +β))

= (x – α)(x² – x(α+β + α – β) + (α² – β²))

= (x – α)(x² – 2xα + (α² – β²))

= x³ – 2x²α + x(α² – β²) – αx² +2α²x – α³ + αβ²

= x³ – 3αx² + x(3α² – β²) + αβ² – α³

= kx³ – 3αkx² + xk(3α² – β²) + k(αβ² – α³)

comparing with

kx³ – 8x² + 5

k(3α² – β²) = 0 => 3α² = β²

k(αβ² – α³) = 5

=k(3α³ – α³) = 5

= k2α³ = 5

3αk = 8 => k = 8/3α

(8/3α)2α³ = 5

=> α² = 15/16

=> α = √15 / 4

Similar questions