Math, asked by anjalinikhara5126, 11 months ago

3a+1/3a=7,find 27a^3+1/27a^3

Answers

Answered by tahseen619
6

322

Step-by-step explanation:

Given:

3a +  \dfrac{1}{3a}  = 7

To find:

27 {a}^{3}  +  \dfrac{1}{27 {a}^{3}}

Solution:

3a +  \dfrac{1}{3a}  = 7  \\  \\ [\text{Cubing both side}] \\  \\ ({3a +  \dfrac{1}{3a})}^{3}  = {7}^{3}  \\  \\ 27 {a}^{3}  +  \frac{1}{27 {a}^{3}}  + 3.3a. \frac{1}{3a} (3a +  \frac{1}{3a} ) = 343 \\  \\ 27 {a}^{3}  +  \frac{1}{27 {a}^{3}}  + 3. \cancel{3a}. \frac{1}{ \cancel{3a}} (7 ) = 343 \\  \\ 27 {a}^{3}  +  \frac{1}{27 {a}^{3}}  + 3. (7 ) = 343 \\  \\ 27 {a}^{3}  +  \frac{1}{27 {a}^{3}}  + 21 = 343 \\  \\ 27 {a}^{3}  +  \frac{1}{27 {a}^{3}}   = 343 - 21 \\  \\ 27 {a}^{3}  +  \frac{1}{27 {a}^{3}}   = 322

The required answer is 322.

{{\boxed{ \text{\blue{Some Important Algebra Formula}}}}}

{(x + y)}^{3}={x}^{3}+{y}^{3}+ 3xy(x + y) \\ \\(x - y)^{3}={x}^{3}-{y}^{3}- 3xy(x - y)

Answered by Anonymous
3

\rule{200}3

\huge\tt{GIVEN:}

  • 3a + ⅓a = 7

\rule{200}3

\huge\tt{TO~FIND:}

  • 27a³ + 1/27a³

\rule{200}3

\huge\tt{SOLUTION:}

3a + ⅓a = 7

(3a + 1/3a)³ = 7³ (Cubing both sides)

27a³ + 1/27a³ + 3.3a.1/3a(3a+1/3a) = 343

27a³ + 1/27a³ + 1/27a³ + 3.3.1/3a(7) = 343

27a³ + 1/27a³ + 3(7) = 343

27a³ + 1/27a³ + 21 = 343

27a³ + 1/27a³ = 343 - 21

27a³ + 1/27a³ = 322 (Answer)

\rule{200}3

Similar questions
Math, 5 months ago