Math, asked by rajuballia55, 10 months ago

(3a)² - (5b)²+50b²-30ab=(x-y)²​

Answers

Answered by mysticd
10

 Given \:(3a)^{2} - (5b)^{2} + 50b^{2} - 30ab = (x-y)^{2}

 \implies (3a)^{2} - 25b^{2} + 50b^{2} - 30ab = (x-y)^{2}

 \implies (3a)^{2} + 25b^{2} - 30ab = (x-y)^{2}

 \implies (3a)^{2} + (5b)^{2} - 2\times (3a) \times (5b) = (x-y)^{2}

 \implies ( 3a - 5b )^{2} = ( x - y )^{2}

/* Compare bothsides we get */

 \red { x } \green {= 3a} \: and \: \red{ b }\green { = 5b }

Therefore.,

 \red { x } \green {= 3a} \: and \: \red{ b }\green { = 5b }

•••♪

Answered by amitnrw
2

Given : (3a)²-(5b)²+50b²-30ab = (x - y)²

To find : value of x and y​

Solution:

(3a)²-(5b)²+50b²-30ab = (x - y)²

(3a)²-(5b)²+50b²-30ab

= (3a)²  - 25b²  + 50b² - 30ab

=  (3a)²  +  25b²- 30ab

=  (3a)²  + (5b)²- 2(3a)(5b)

= (3a - 5b)²

x = 3a  and  y  = 5b  

or

x = 5b and y = 3a

Learn More:

If x²-y²= 12 and x³+y³ = 72, find the value of x and y​ - Brainly.in

brainly.in/question/8403056

Solve the simultaneous equations x+y=4 ; 2x-3y=-2 graphically ...

brainly.in/question/8383505

Similar questions