(3a-36+5c)+ (4a+116+2c
Answers
Answer:
What's the trick used to solve below problem? If a + b + c = 7/12, 3a – 4b + 5c = 3/4 and 7a – 11b – 13c = – 7/12, then what is the value of a + c?
We've
a+b+c = (7÷12)—————(1)
3a-4b+5c = (3÷4)————(2)
7a-11b-13c = -(7÷12)———(3)
Now {[(1)x4]+[2]}
Which gives
[{a+b+c = (7÷12)}] x 4
4a+4b+4c = (7x4÷12)
4a+4b+4c = (7÷3)—————(5)
Now add the eq. 2&5
{3a-4b+5c = (3÷4)}+{4a+4b+4c = (7÷3)}
=> {(3a+4a)+(-4b+4b)+(5c+4c)= (3÷4)+(7÷3)
=> 7a+9c={(3x3÷4x3)+(7x4)÷(3x4)}
=> 7a+9c = {(9÷12)+(21÷12)}
=> 7a+9c = {(9+21)÷12}
=> 7a+9c = {40÷12}——————(6)
Now multiply eq.(1) with 11
[{a+b+c = (7÷12)}]x11
11a+11b+11c = {(7÷12)x11}
11a+11b+11c = (77÷12)——————(7)
Now add the eq. 3&7
(7a-11b-13c)+(11a+11b+11c) = (77÷12)-(7÷12)
{(7a+11a)+(-11b+11b)+(-13c+11c)} = {(77–7)÷12}
18a-2c= (70÷12)—————————(8)
For individual solution we should modify the equations 6 & 8…..
Now multiply eqn.6 with 9 ( due to b position)
(7a+9c = {40÷12})x2
=> 14a+18b = (80÷12)———————(9)
Now multiply eqn.8 with 9 ( due to b position)
{18a-2c= (70÷12)}x9
=> 162a-18b = (630÷12)———————(10)
Now add eq. 9&10 we get
{ 14a+18b = (80÷12)}+{162a-18b = (630÷12)}
178a = {(80+630)÷12}
178a = (710÷12)
a = {710÷(178x12)}
a = 0.3324
Now substitute a value in eq. 9
14a+18b = (80÷12)
14x0.3324+18b = (80÷12)
4.653558+ 18b = 6.6666666
18b = 6.666666–4.643558
18b = 2.023108
b = 0.1123949
Now substitute the a &b values in eq.1
a+b+c = (7÷12)
a+b+c = 0.583333
0.3324 + 0.1123949 + c = 0.583333
c = 0.583333-(0.3324+0.1123949)
c = 0.1385384
Now the requirement is to find the summetion of a&c
a+c = 0.3324 + 0.1385384
So the final answer is
a+c = 0.34625384.