Math, asked by kplpuja14, 10 months ago

(3a+7)²-84a = (3a-7)² by using idinties

Answers

Answered by Brâiñlynêha
39

\huge\mathbb{SOLUTION:-}

\bf\underline{\underline{Step\:By\:step\: Explanation:-}}

  • Identity used

\boxed{\sf{ (a+b){}^{2}=a{}^{2}+b{}^{2}+2ab}}

\boxed{\sf{ (a-b){}^{2}=a{}^{2}+b{}^{2}-2ab}}

  • Now:-
  • L.H.S

\sf\implies (3a+7){}^{2}-84a\\ \\ \sf\implies (3a){}^{2}+(7){}^{2}+2\times 3a\times 7-84a\\ \\ \sf\implies 9a{}^{2}+49+ 42a-84a\\ \\ \sf\implies 9a{}^{2}+49-42a\:\:\\ \\ \tt\:\:\:or\:\:(3a-7){}^{2}

  • Now R.H.S

\sf\implies (3a-7){}^{2}\\ \\ \sf\implies (3a){}^{2}+(7){}^{2}-2\times 3a\times 7\\ \\ \sf\implies 9a{}^{2}+49-42a\\ \\ \tt\:\:\:or\:\:(3a-7){}^{2}

\sf\leadsto \:\:\: L.H.S=R.H.S\\ \\ \tt\implies (3a+7){}^{2}-84a=(3a-7){}^{2}\:\:\:{\red{\sf{Hence\: proved ! ! !}}}

Answered by Anonymous
30

Step-by-step explanation:

Refer to this attachment.❤

\huge\underline\mathcal\red{♡Thanks♡}

Attachments:
Similar questions