3a²b+6ab²-3ab+6a ÷ 3a By long division method with steps
Answers
3a2b + 6ab2 - 3ab + 6a ÷ 3a
3a( ab + 2b2 - b + 2 ) ÷ 3a
so 3a from numerator and denominator get cancelled out.
Therefore the remainder is
Given:
The given expression is 3a²b+6ab²-3ab+6a.
Find:
(3a²b+6ab²-3ab+6a)÷3a by long division method.
Answer:
(ab + 2b² - b + 2)
Solution:
Long Division Method:
Dividend = 3a²b+6ab²-3ab+6a
Divisor = 3a
3a ab + 2b² - b + 2
+3a²b
0 + 6ab²
- 6ab²
0 - 3ab
- 3ab
+
0 + 6a
- 6a
0
Quotient = ab + 2b² - b + 2
Remainder = 0
Verification:
Dividend = Divisor × Quotient + Remainder
3a²b+6ab²-3ab+6a = 3a × (ab + 2b² - b + 2) + 0
3a²b+6ab²-3ab+6a = 3a²b+6ab²-3ab+6a + 0
3a²b+6ab²-3ab+6a = 3a²b+6ab²-3ab+6a
L.H.S. = R.H.S.
Hence verified.
Hence, (3a²b+6ab²-3ab+6a) ÷ 3a = (ab + 2b² - b + 2).
#SPJ2