Math, asked by shivam143380, 6 months ago

3rd term of an AP is 15 and 10th term is 50, then sum upto 20th term is 1050. it is true or false​

Answers

Answered by EliteZeal
19

\huge{\blue{\bold{\underline{\underline{Answer :}}}}}

 \:\:

 \large{\green{\underline \bold{\tt{Given :-}}}}

 \:\:

  • 3rd term of an AP is 15

 \:\:

  • 10th term is 50

 \:\:

 \large{\red{\underline \bold{\tt{To \: Find :-}}}}

 \:\:

  • Sum upto 20th term

 \:\:

\large{\orange{\underline{\tt{Solution :-}}}}

 \:\:

We know that

 \:\:

 \sf a_n = a + (n - 1)d ----- (1)

 \:\:

Where ,

 \:\:

  •  \sf a_n = nth term

  • a = First term

  • d = Common difference

  • n = Number of terms

 \:\:

 \underline{\bold{\texttt{For 3rd term :}}}

 \:\:

  •  \sf a_n = 15

  • a = a

  • d = d

  • n = 3

 \:\:

Putting these values in (1)

 \:\:

 \sf a_n = a + (n - 1)d

 \:\:

 \sf 15 = a + (3 - 1)d

 \:\:

 \sf 15 = a + 2d ------ (2)

 \:\:

 \underline{\bold{\texttt{For 10th term :}}}

 \:\:

  •  \sf a_n = 50

  • a = a

  • d = d

  • n = 10

 \:\:

Putting these values in (1)

 \:\:

 \sf a_n = a + (n - 1)d

 \:\:

 \sf 50 = a + (10 - 1)d

 \:\:

 \sf 50 = a + 9d ----- (3)

 \:\:

Subtracting equation (2) from (3)

 \:\:

➜ 50 - 15 = a + 9d - (a + 2d)

 \:\:

➜ 35 = a + 9d - a - 2d

 \:\:

➜ 35 = 7d

 \:\:

 \sf d = \dfrac { 35 } { 7 }

 \:\:

➨ d = 5 ------ (4)

 \:\:

  • Hence common difference is 5

 \:\:

Putting d = 5 from (4) to (2)

 \:\:

➜ 15 = a + 2d

 \:\:

➜ 15 = a + 2(5)

 \:\:

➜ 15 = a + 10

 \:\:

➜ a = 15 - 10

 \:\:

➨ a = 5

 \:\:

  • Hence first term is 5

 \:\:

 \underline{\bold{\texttt{Sum of terms :}}}

 \:\:

 \sf S_n = \dfrac { n } { 2 } (2a + (n - 1)d) ---- (5)

 \:\:

Where,

 \:\:

  •  \sf S_n = Sum of n terms

  • n = Number of terms

  • a = First term

  • d = Common difference

 \:\:

 \underline{\bold{\texttt{Sum of 20 terms :}}}

 \:\:

  •  \sf S_n =  \sf S_{ 20 }

  • n = 20

  • a = 5

  • d = 5

 \:\:

Putting these values in (5)

 \:\:

 \sf S_n = \dfrac { n } { 2 } (2a + (n - 1)d)

 \:\:

 \sf S_{ 20 } = \dfrac { 20} { 2 } (2(5)+ (20 - 1)5)

 \:\:

 \sf S_{ 20 } = 10(10 + 19(5))

 \:\:

 \sf S_{ 20 } = 10(10 + 95)

 \:\:

 \sf S_{ 20 } = 10(105)

 \:\:

 \sf S_{ 20 } = 1050

 \:\:

Thus the sum of 20 terms is 1050

 \:\:

  • Hence the given condition was true

 \:\:

═════════════════════════

Similar questions