Math, asked by sumanchakraborty622, 9 months ago

3s=a+b+c then (s-a)^2 + (s-b)^2 + (s-c)^2 =?​

Answers

Answered by pulakmath007
79

SOLUTION

GIVEN

 \sf{3s = a + b + c \: }

TO DETERMINE

 \sf{ {(s - a)}^{2}  +  {(s - b)}^{2} +  {(s - c)}^{2}  }

EVALUATION

Here it is given that

 \sf{3s = a + b + c \: }

 \sf{Let \:  \: x =  s -  a, y = s - b, z =  s - c}

Then

 \sf{x + y + z \: }

 =  \sf{s - a + s - b + s - c \: }

 \sf{ = 3s - a - b - c}

 \sf{ = 3s - (a  + b  + c)}

 \sf{ = 3s - 3s}

  \sf{ = 0}

Now we are aware of the identity that

 \sf{ {(x + y + z)}^{2}  =  {x}^{2} +  {y}^{2}  +  {z}^{2}    + 2(xy + yz + zx)}

 \implies \sf{ {(0)}^{2}  =  {x}^{2} +  {y}^{2}  +  {z}^{2}    + 2(xy + yz + zx)}

 \implies \sf{   {x}^{2} +  {y}^{2}  +  {z}^{2}  =  -  2(xy + yz + zx)}

 \implies \sf{ {(s - a)}^{2}  +  {(s - b)}^{2} +  {(s - c)}^{2}  =  - 2{(s - a)} {(s - b)} {(s - c)} }

FINAL ANSWER

  \sf{ {(s - a)}^{2}  +  {(s - b)}^{2} +  {(s - c)}^{2}  =  - 2{(s - a)} {(s - b)} {(s - c)} }

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

If the distance of the point P from the point

(3, 4) is √10 and abscissa of P is double its ordinate, find the co-ordinate

https://brainly.in/question/24239320

Similar questions