Math, asked by saruG, 7 months ago

√3sinQ=cosQ find the value of sin Q(tanQ)(1+cotQ)/(sinQ+cosQ)

Answers

Answered by deepak35679
0

Answer:

 \frac{ \sqrt{3} (2 +  \sqrt{3} )}{2}

Step-by-step explanation:

Given that

 \sqrt{3} sin \alpha  = cos \alpha  \\   => \frac{sin \alpha }{cos \alpha }  =  \sqrt{3}  \\  => tan \alpha  =  \sqrt{3}  \:  \:  \\ \:  \:    => tan \alpha  = tan {60}^{0}  \\  =>  \alpha  =  {60}^{0}

Now the given expressions is

sin \alpha tan \alpha (1 + cot \alpha )(sin \alpha  + cos \alpha )

  = \frac{ \sqrt{3} }{2}  \times  \sqrt{3} (1 +  \frac{1}{ \sqrt{3} } )( \frac{ \sqrt{3} }{2}  +  \frac{1}{2} )

 =  \frac{3}{2} ( \frac{ \sqrt{3}  + 1}{ \sqrt{3} } )( \frac{ \sqrt{3}  + 1}{2} )

 =  \frac{3 {( \sqrt{3}  + 1)}^{2} }{4 \sqrt{3} }

 = \frac{ \sqrt{3} (3 + 2 \sqrt{3 }  + 1)}{4}

 =  \frac{ \sqrt{3} (4 + 2 \sqrt{3} )}{4}

 =  \frac{2 \sqrt{3}(2 +  \sqrt{3} ) }{4}

 =  \frac{ \sqrt{3}(2 +  \sqrt{3})}{2}

Similar questions