Math, asked by hazirahain4, 1 year ago

(3tan45) (4sin60) - (2cos30) (3sin30)

Answers

Answered by anr4u97
1

This is ur answer. Hope u got it

Attachments:
Answered by soumya2301
4

\huge {\underline {\mathcal{Question}}}

(3tan45) (4sin60) - (2cos30) (3sin30)

\huge {\underline {\mathcal{Solution}}}

As we know that ...

 \tan(45)  = 1

 \sin(60)  =   \frac{ \sqrt{3} }{2}

 \cos(30)  =  \frac{ \sqrt{3} }{2}

 \sin(30)  =  \frac{1}{2}

By putting all this values , ...

(3tan45) (4sin60) - (2cos30) (3sin30)

 = (3 \times 1)(4 \times  \frac{ \sqrt{3} }{2} ) - (2 \times  \frac{ \sqrt{3} }{2} )(3 \times  \frac{1}{2} )

 = (3)(2 \sqrt{3} ) - ( \sqrt{3} )( \frac{3}{2} )

 = 6 \sqrt{3}  -  \frac{3}{2}  \sqrt{3}

 = 3 \sqrt{3} (2 -  \frac{1}{2} )

 = 3 \sqrt{3}  \times  \frac{3}{2}

 =  \frac{9 \sqrt{3} }{2}

Similar questions