Math, asked by sambhavkaushik55, 11 months ago

√3x^2+5x+2√3 factorise how? with steps to understand ​

Answers

Answered by umiko28
4

Answer:

\huge\underline{ \underline{ \red {your \: \: \: answer}}}

\large\boxed{ \fcolorbox{red}{pink}{hope \: it \: help \: you}}

Step-by-step explanation:

 \bf\red{ \implies: { \sqrt{3} x}^{2}  + 5x + 2 \sqrt{3} = 0 }   \\  \\  \bf\pink{ \implies: { \sqrt{3} x}^{2} + (3x  + 2x) + 2 \sqrt{3}   = 0\: \:  \:  \:  \:  \:   \bf\green{ \{ \therefore 2 \sqrt{3} \times  \sqrt{3} = 6(3x  +  2x= 5x \: and \: 3x \times 2x = 6 {x}^{2} )   \} = }   }   \\  \\  \bf\orange{ \implies: { \sqrt{3} {x}^{2}   + 3x  + 2x + 2 \sqrt{3} } = 0}   \\  \\  \bf\blue{ \implies: \sqrt{3}x(x +  \sqrt{3} ) + 2(x +  \sqrt{3}) = 0  }   \\  \\  \bf\green{ \boxed{ \bigstar \implies:( \sqrt{ 3}x + 2 )(x +  \sqrt{3} ) = 0 \:  \bigstar}}   \\  \\  \bf\purple{  \sqrt{3}x + 2 = 0 }   \\  \bf\red{  \implies x = \frac{ - 2}{ \sqrt{3} }  }   \\  \\  \bf\pink{x +  \sqrt{3} = 0 }   \\  \bf\blue{ \implies:x =  -  \sqrt{3} }

Similar questions