Math, asked by lxmnrnseth, 1 year ago

3x/2-5y/3=-2,x/2+y/2=13/6 solve by substitution method

Answers

Answered by AbhijithPrakash
6

Answer:

3\cdot \dfrac{x}{2}-5\cdot \dfrac{y}{3}=-2,\:\dfrac{x}{2}+\dfrac{y}{2}=\dfrac{13}{6}\quad :\quad y=\dfrac{51}{19},\:x=\dfrac{94}{57}

Step-by-step explanation:

\begin{bmatrix}3\cdot \dfrac{x}{2}-5\cdot \dfrac{y}{3}=-2\\ \dfrac{x}{2}+\dfrac{y}{2}=\dfrac{13}{6}\end{bmatrix}

\black{\mathrm{Isolate}\:x\:\mathrm{for}\:3\dfrac{x}{2}-5\dfrac{y}{3}=-2:}

3\cdot \dfrac{x}{2}-5\cdot \dfrac{y}{3}=-2

\gray{\mathrm{Add\:}5\dfrac{y}{3}\mathrm{\:to\:both\:sides}}

3\cdot \dfrac{x}{2}-5\cdot \dfrac{y}{3}+5\cdot \dfrac{y}{3}=-2+5\cdot \dfrac{y}{3}

\gray{\mathrm{Simplify}}

3\cdot \dfrac{x}{2}=-2+\dfrac{5y}{3}

\gray{\mathrm{Refine\:}3\cdot \dfrac{x}{2}:\quad \dfrac{3x}{2}}

\dfrac{3x}{2}=-2+\dfrac{5y}{3}

\gray{\mathrm{Multiply\:both\:sides\:by\:}2}

\dfrac{3x}{2}\cdot \:2=-2\cdot \:2+\dfrac{5y}{3}\cdot \:2

\gray{\mathrm{Simplify}}

3x=-4+\dfrac{10y}{3}

\gray{\mathrm{Divide\:both\:sides\:by\:}3}

\dfrac{3x}{3}=-\dfrac{4}{3}+\dfrac{\dfrac{10y}{3}}{3}

\gray{\mathrm{Simplify}}

x=\dfrac{-12+10y}{9}

\gray{\mathrm{Subsititute\:}x=\dfrac{-12+10y}{9}}

\begin{bmatrix}\dfrac{\dfrac{-12+10y}{9}}{2}+\dfrac{y}{2}=\dfrac{13}{6}\end{bmatrix}

\black{\mathrm{Isolate}\:y\:\mathrm{for}\:\dfrac{\dfrac{-12+10y}{9}}{2}+\dfrac{y}{2}=\dfrac{13}{6}:}

\dfrac{\dfrac{-12+10y}{9}}{2}+\dfrac{y}{2}=\dfrac{13}{6}

\gray{\mathrm{Expand\:}\dfrac{\dfrac{-12+10y}{9}}{2}+\dfrac{y}{2}:\quad -\dfrac{2}{3}+\dfrac{19y}{18}}

-\dfrac{2}{3}+\dfrac{19y}{18}=\dfrac{13}{6}

\gray{\mathrm{Multiply\:both\:sides\:by\:}18}

-\dfrac{2}{3}\cdot \:18+\dfrac{19y}{18}\cdot \:18=\dfrac{13}{6}\cdot \:18

\gray{\mathrm{Simplify}}

-12+19y=39

\gray{\mathrm{Add\:}12\mathrm{\:to\:both\:sides}}

-12+19y+12=39+12

\gray{\mathrm{Simplify}}

19y=51

\gray{\mathrm{Divide\:both\:sides\:by\:}19}

\dfrac{19y}{19}=\dfrac{51}{19}

\gray{\mathrm{Simplify}}

y=\dfrac{51}{19}

\gray{\mathrm{For\:}x=\dfrac{-12+10y}{9}}

\gray{\mathrm{Subsititute\:}y=\dfrac{51}{19}}

\gray{x=\dfrac{-12+10\cdot \dfrac{51}{19}}{9}}

\black{\dfrac{-12+10\cdot \dfrac{51}{19}}{9}}

\gray{10\cdot \dfrac{51}{19}=\dfrac{510}{19}}

=\dfrac{-12+\dfrac{510}{19}}{9}

\gray{\mathrm{Join}\:-12+\dfrac{510}{19}:\quad \dfrac{282}{19}}

=\dfrac{\dfrac{282}{19}}{9}

\gray{\mathrm{Apply\:the\:fraction\:rule}:\quad \dfrac{\dfrac{b}{c}}{a}=\dfrac{b}{c\:\cdot \:a}}

=\dfrac{282}{19\cdot \:9}

\gray{\mathrm{Multiply\:the\:numbers:}\:19\cdot \:9=171}

=\dfrac{282}{171}

\gray{\mathrm{Cancel\:the\:common\:factor:}\:3}

=\dfrac{94}{57}

x=\dfrac{94}{57}

\gray{\mathrm{The\:solutions\:to\:the\:system\:of\:equations\:are:}}

y=\dfrac{51}{19},\:x=\dfrac{94}{57}

Attachments:

Niruru: Brilliant answer!
AbhijithPrakash: Thanks!!
Similar questions