Math, asked by sonyakahar30001, 2 months ago

(3x + 2y)(3x + 2y) – (4x – 3y)2 + (2x +
+ (2x + 3y)(2x - 3y)

Answers

Answered by hotelcalifornia
0

Step-by-step explanation:

Given:

(3x + 2y)(3x + 2y)-(4x-3y)2 +(2x+3y)(2x-3y)

To find:

The value of (3x + 2y)(3x + 2y)-(4x-3y)2 +(2x+3y)(2x-3y) .

Solution:

Given that,

(3x + 2y)(3x + 2y)-(4x-3y)2 +(2x+3y)(2x-3y)

Here, multiply (3x+2y) and (3x+2y) to get (3x+2y)^2.

(3x + 2y)^2-(4x-3y)2 +(2x+3y)(2x-3y)

Now, use the binomial theorem (a+b)^2=a^2+2ab+b^2 to expand (3x+2y)^2.

9x^2+12xy+4y^2-(4x-3y)2 +(2x+3y)(2x-3y)

Now, use the distributive property to multiply (4x-3y) by 2.

9x^2+12xy+4y^2-(8x-6y) +(2x+3y)(2x-3y)

To find the opposite of 8x-6y, find the opposite of each term.

9x^2+12xy+4y^2-8x-(-6y) +(2x+3y)(2x-3y)

Now, to the opposite of -6y is 6y.

9x^2+12xy+4y^2-8x+6y+(2x+3y)(2x-3y)

Here, consider (2x+3y)(2x-3y). Multiplication can be transformed into the difference of squares using the rule: (a-b)(a+b)=a^2-b^2.

9x^2+12xy+4y^2-8x+6y+(2x)^2-(3y)^2

Expand (2x^2).

9x^2+12xy+4y^2-8x+6y+2^2x^2-(3y)^2

Here, calculate 2 to the power of 2 and get 4.

9x^2+12xy+4y^2-8x+6y+4x^2-(3y)^2

Now, expand (3y)^2.

9x^2+12xy+4y^2-8x+6y+4x^2-3^2y^2

Here, calculate 3 to the power of 2 and get 9.

9x^2+12xy+4y^2-8x+6y+4x^2-9y^2

Now, combine 9x^2 and 4x^2 to get 13x^2.

13x^2+12xy+4y^2-8x+6y-9y^2

Again combine 4y^2 and -9y^2 to get -5y^2.

13x^2+12xy-5y^2-8x+6y

Hence the answer is 13x^2+12xy-8x-5y^2+6y.

Answer:

The value of (3x + 2y)(3x + 2y)-(4x-3y)2 +(2x+3y)(2x-3y) is 13x^2+12xy-8x-5y^2+6y.

Similar questions