Math, asked by nskamble2005, 9 months ago

3x+2y=5 and 6x+4y=10 ifa1/a2 than these simultaneous equations have​

Answers

Answered by pulakmath007
16

\huge\boxed{\underline{\underline{\green{Solution}}}} </p><p>

 \displaystyle \:  \longmapsto \:  \: FORMULA TO BE IMPLEMENTED

A pair of Straight Lines

 \displaystyle \: a_1x+b_1y+c_1=0   \: and \:  \: a_2x+b_2y+c_2=0

have infinite number of solutions if  \displaystyle \:  \:  \frac{a_1}{a_2}  = \frac{b_1}{b_2}=\frac{c_1}{c_2}

 \displaystyle \:  \longmapsto \:  \: CALCULATION :

Given pair of linear equations

3x +2y = 5  \:  \: and  \:  \: 6x + 4y =10

Comparing with

 \displaystyle \: a_1x+b_1y+c_1=0   \: and \:  \: a_2x+b_2y+c_2=0

We get

 \displaystyle \: a_1 = 3 \:   , \: b_1 =  2 \:    ,  c_1= 5 \: and \:  \: a_2 = 6 \:    ,  \:  b_2 = 4\:  ,   \:  \: c_2= 10

 \displaystyle \:  \frac{a_1}{a_2}  =  \frac{3}{6}  =  \frac{1}{2}

 \displaystyle \:  \frac{b_1}{b_2}  =  \frac{2}{4}  =  \frac{1}{2}

 \displaystyle \:  \frac{c_1}{c_2}  =  \frac{5}{10}  =  \frac{1}{2}

So  \displaystyle \:  \:  \frac{a_1}{a_2}  = \frac{b_1}{b_2}=\frac{c_1}{c_2}

Hence given system of equations have infinite number of solutions

Similar questions