Math, asked by aryaapattnaik, 18 days ago

3x +4y= 25 and xy=10. find 9x² +16y²​

Answers

Answered by tennetiraj86
4

Step-by-step explanation:

Given :-

3x+4y = 25

xy = 10

To find :-

The value of 9x²+16y².

Solution :-

Given that

3x+4y = 25 --------(1)

xy = 10 -------------(2)

On squaring (1) both sides then

(3x+4y)² = 25²

LHS is in the form of (a+b)²

Where, a = 3x and b = 4y

We know that

(a+b)² = +2ab+

Therefore,

(3x)²+2(3x)(4y)+(4y)² = 25×25

=> 9x²+24xy+16y² = 625

=> 9x²+16y²+24xy = 625

=> 9x²+16y²+24(10) = 625 (From (1))

=> 9x²+16y² +240 = 625

=> 9x²+16y² = 625-240

=> 9x²+16y² = 385

Answer :-

The value of 9x²+16y² is 385

Used Identity :-

(a+b)² = +2ab+

Answered by Anonymous
9

Given :-

  • 3x + 4y = 25.. (eq. 1)
  • xy = 10...(eq. 2)

To Find :-

  • The value of 9x² + 16y²

Formula Used :-

 \quad \bigstar \:  \underline{ \boxed{ \sf (a + b) {}^{2}  =  {a}^{2}  + 2ab +  {b}^{2} }}

Solution :-

Squaring on both sides we get :-

 \sf \longrightarrow \: (3x + 4y) {}^{2}   =  {25}^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \:  \:  \:  \:  \\  \\ \sf \longrightarrow \:9 {x}^{2}  + 2(3x \times 4y) +  {16y}^{2}  = 625 \\  \\ \sf \longrightarrow \: {9x}^{2}  + 24xy +  {16y}^{2}  = 625  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Now, we will put the value of xy i.e. 10, we get :-

 \sf \longrightarrow \: {9x}^{2}  + 24 \times 10 +  {16y}^{2}  = 625 \\  \\\sf \longrightarrow \: {9x}^{2}   +  {16y}^{2}  = 625 - 240 \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \sf \longrightarrow \: {9x}^{2}  +  {16y}^{2}  = 385 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\rule{200pt}{}

Similar questions