√3x-5-1/√3x-5 , Find derivative.
Answers
Answered by
11
Let,
Now, differentiating both sides with respect to x, we get
This is the required derivative.
Answered by
2
dy/dx = √(3x - 5) - 1/√(3x - 5) = (9x - 12)/(2∛(3x - 5))
Step-by-step explanation:
√(3x - 5) - 1/√(3x - 5) = (3x - 6)/√(3x - 5)
On applying quotient rule, we get,
d(f(x)/g(x)) = ((g(x) × df(x)) - (f(x) - dg(x)))/(g(x))²
Now,
y = f(x)/g(x) = (3x - 6)/√(3x - 5)
df(x) = 3
dg(x) = 3/(2(3x - 5))¹⁾²
Thus,
d(f(x)/g(x)) = ((√(3x - 5) × 3) - ((3x - 6) × 3/(2√(3x - 5))))/(3x - 5)
d(f(x)/g(x)) = (3(√(3x - 5)) - ((3(3x - 6))/(2√(3x - 5)))/(3x - 5)
d(f(x)/g(x)) = (6(3x - 5) - 3(3x - 6))/(2√(3x - 5))/(3x - 5)
d(f(x)/g(x)) = (6(3x - 5) - 3(3x - 6))/(2√(3x - 5)(3x - 5))
d(f(x)/g(x)) = (18x - 30 - 9x + 18)/(2∛(3x - 5))
d(f(x)/g(x)) = (9x - 12)/(2∛(3x - 5))
Similar questions