Math, asked by choudhurysulekha2006, 8 months ago

3x=5y=(75)z find the relation among x,y,z
A=60° B=30 verify that tan(A-B)=tanA-tanB/1+tanAtanB

Answers

Answered by anindyaadhikari13
1

\star\:\:\:\sf\large\underline\blue{Question:-}

  • Verify the following.

\star\:\:\:\sf\large\underline\blue{Verification:-}

Given,

 \sf \alpha  = 60 \degree

 \sf \beta  = 30 \degree

Now,

 \sf \tan( \alpha  -  \beta )  =  \tan(60 \degree - 30  \degree)

 \sf =  \tan 30 \degree

  \sf  = \frac{1}{ \sqrt{3} }

Now,

  \sf\frac{ \tan \alpha -  \tan \beta   }{1 +  \tan \alpha  \tan \beta   }

 = \sf  \frac{ \tan60 \degree -  \tan30 \degree}{1 +  \tan60 \degree  \tan30 \degree }

 \large\sf =  \frac{ \sqrt{3}  -  \frac{1}{ \sqrt{3} } }{1 +  ( \cancel{\sqrt{3}} \times  \frac{1}{  \cancel{\sqrt{3} }} ) }

 \large\sf =  \frac{ \frac{3 - 1}{ \sqrt{3} } }{1 + 1}

 \sf =  \frac{ \cancel{2}}{ \sqrt{3} }  \times  \frac{1}{ \cancel{2} }

 \sf =  \frac{1}{ \sqrt{3} }

Therefore,

 \boxed{ \sf  \tan( \alpha  -  \beta )  =  \frac{ \tan \alpha  -  \tan \beta   }{1 +  \tan \alpha  \tan \beta } }

Hence, Verified.

Attachments:
Answered by nehashanbhag0729
1

Answer:

hey watch the above pic for ur answer of the question .hope it helps you .

Attachments:
Similar questions