3x+y+2z=3
2x-3y-z=-3
x+2y+z=4
solve using matrix method
Answers
Answered by
6
Hello,
[tex]\left\{\begin{matrix} 3x+y+2z=3\\ 2x-3y-z=-3\\ x+2y+z=4 \end{matrix}\right.[/tex]
from the third you get:
x=4-2y-z
substituting in the first, we obtain:
3(4-2y-z)+y+2z=3;
12-6y-3z+y+2z=3;
-5y-z=3-12;
-z-5y=-9;
z+5y=9;
z=9-5y
substituting in the second one, we obtain:
2(4-2y-z)-3y-(9-5y)=-3;
8-4y-2z-3y-9+5y=-3;
8-2y-2(9-5y)-9=-3;
8-2y-18+10y-9=-3;
-19+8y=-3;
8y=19-3;
8y=16;
y=16:8=2;
y=2
therefore:
z=9-5y=9-5×2=9-10=-1
and
x=4-2y-z=4-(2×2)-(-1)=4-4+1=1
So you have:
x=1, y=2 , z=-1
bye :-)
[tex]\left\{\begin{matrix} 3x+y+2z=3\\ 2x-3y-z=-3\\ x+2y+z=4 \end{matrix}\right.[/tex]
from the third you get:
x=4-2y-z
substituting in the first, we obtain:
3(4-2y-z)+y+2z=3;
12-6y-3z+y+2z=3;
-5y-z=3-12;
-z-5y=-9;
z+5y=9;
z=9-5y
substituting in the second one, we obtain:
2(4-2y-z)-3y-(9-5y)=-3;
8-4y-2z-3y-9+5y=-3;
8-2y-2(9-5y)-9=-3;
8-2y-18+10y-9=-3;
-19+8y=-3;
8y=19-3;
8y=16;
y=16:8=2;
y=2
therefore:
z=9-5y=9-5×2=9-10=-1
and
x=4-2y-z=4-(2×2)-(-1)=4-4+1=1
So you have:
x=1, y=2 , z=-1
bye :-)
kvnmurty:
thanks
Answered by
9
Solving the system of simultaneous equations by using matrix method:
3x + y + 2 z = 3
2x - 3 y - z = -3
x + 2 y + z = 4
MATRIX METHOD:
x = 1, y =2, z = -1.
3x + y + 2 z = 3
2x - 3 y - z = -3
x + 2 y + z = 4
MATRIX METHOD:
x = 1, y =2, z = -1.
Similar questions
Math,
8 months ago
Math,
8 months ago
Accountancy,
8 months ago
Geography,
1 year ago
Chemistry,
1 year ago
Computer Science,
1 year ago
Social Sciences,
1 year ago