Math, asked by rosie9092, 1 year ago

3x-y=5, 4x-3y=-1 Hence find p, if y=px-3​

Answers

Answered by ashishks1912
47

GIVEN :

The equations are 3x-y=5, 4x-3y=-1. Hence find p, if y=px-3​

TO FIND :

The value of p in the given equation y=px-3​

SOLUTION :

Given equations are 3x-y=5, 4x-3y=-1

To  find p, if y=px-3​ :

Let the equations

3x-y=5\hfill (1) and

4x-3y=-1\hfill (2)

Now put y=px-3 in equations (1) and (2)

(1) ⇒ 3x-(px-3)=5

3x-px+3=5

3x-px=2\hfill(3)

(2) ⇒ 4x-3(px-3)=-1

4x-3px+9=-1

4x-3px=-10\hfill (4)

Now multiply the equation (3) into 3 we get

9x-3px=6\hfill (5)

Subtracting the equations (4) and (5)

 4x-3px=-10

 9x-3px=6

(-)_(+)__(-)________

 -5x=-16

5x=16

x=\frac{16}{5}

Substitute the value x=\frac{16}{5} in equation (1)

3(\frac{16}{5})-y=5

-y=\frac{-48}{5}+5

-y=\frac{-48+25}{5}

-y=\frac{-23}{5}

y=\frac{23}{5}

Substitute the values  x=\frac{16}{5}and y=\frac{23}{5} in equation y=px-3 we get

\frac{23}{5}=p(\frac{16}{5})-3

\frac{23}{5}+3=p(\frac{16}{5})

\frac{23+15}{5}=p(\frac{16}{5})

\frac{38}{5}=p(\frac{16}{5})

38=16p

Rewritting as 16p=38

p=\frac{38}{16}

p=\frac{19}{8}

∴  the value of p is \frac{19}{8} if y=px-3.

Answered by umeshvana
6

Answer:

GIVEN :

The equations are 3x-y=5, 4x-3y=-1. Hence find p, if y=px-3​

TO FIND :

The value of p in the given equation y=px-3​

SOLUTION :

Given equations are 3x-y=5, 4x-3y=-1

To  find p, if y=px-3​ :

Let the equations

and

Now put y=px-3 in equations (1) and (2)

(1) ⇒ 3x-(px-3)=5

3x-px+3=5

(2) ⇒ 4x-3(px-3)=-1

4x-3px+9=-1

Now multiply the equation (3) into 3 we get

Subtracting the equations (4) and (5)

4x-3px=-10

9x-3px=6

(-)_(+)__(-)________

-5x=-16

5x=16

∴  

Substitute the value  in equation (1)

∴  

Substitute the values  and  in equation y=px-3 we get

38=16p

Rewritting as 16p=38

∴  

∴  the value of p is  if y=px-3.

Step-by-step explanation:

Similar questions