Math, asked by aayanismailshaikh, 12 hours ago

3x- y=7 and x+4y=11 graphic method​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given pair of equation of lines is

\rm :\longmapsto\:3x - y = 7

and

\rm :\longmapsto\:x + 4y = 11

Consider,

\rm :\longmapsto\:3x - y = 7

can be rewritten as

\rm :\longmapsto\:y = 3x - 7

Substituting 'x = 0' in the given equation, we get

\rm :\longmapsto\:y = 3(0) - 7

\rm :\longmapsto\:y =0 - 7

\bf\implies \:y =  - 7

Substituting 'x = 1' in the given equation, we get

\rm :\longmapsto\:y = 3(1) - 7

\rm :\longmapsto\:y = 3 - 7

\bf\implies \:y =  - 4

Substituting 'x = 2' in the given equation, we get

\rm :\longmapsto\:y = 3(2) - 7

\rm :\longmapsto\:y =6 - 7

\bf\implies \:y =  - 1

Hᴇɴᴄᴇ,

➢ Pair of points of the given equation are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf  - 7 \\ \\ \sf 1 & \sf  - 4\\ \\ \sf 2 & \sf  - 1 \end{array}} \\ \end{gathered}

➢ Now draw a graph using the points.

➢ See the attachment graph.

Now, Consider

\rm :\longmapsto\:x + 4y = 11

can be rewritten as

\rm :\longmapsto\:x = 11 - 4y

Substituting 'y = 0' in the given equation, we get

\rm :\longmapsto\:x = 11 - 4(0)

\rm :\longmapsto\:x = 11 - 0

\bf\implies \:x = 11

Substituting 'y = 1' in the given equation, we get

\rm :\longmapsto\:x = 11 - 4(1)

\rm :\longmapsto\:x = 11 - 4

\bf\implies \:x = 7

Substituting 'y = 2' in the given equation, we get

\rm :\longmapsto\:x = 11 - 4(2)

\rm :\longmapsto\:x = 11 - 8

\bf\implies \:x = 3

Hᴇɴᴄᴇ,

➢ Pair of points of the given equation are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 11 & \sf 0 \\ \\ \sf 7 & \sf 1 \\ \\ \sf 3 & \sf 2 \end{array}} \\ \end{gathered}

➢ Now draw a graph using the points.

➢ See the attachment graph.

So, graph we concluded that

\begin{gathered}\begin{gathered}\rm :\longmapsto\:\bf\: Solution-\begin{cases} &\bf{x = 3}  \\ \\ &\bf{y = 2} \end{cases}\end{gathered}\end{gathered}

Attachments:
Similar questions