Math, asked by prashant487, 1 year ago

3x2-6x+2=0 using quadratic equation formula ​

Answers

Answered by AbhijithPrakash
3

Answer:

\bold{\huge{\text{The equation has two equal roots; }\sqrt2/\sqrt3}}

Step-by-step explanation:

3 x^{2} -2\sqrt6x+2=0\\3 x^{2} -\sqrt6x-\sqrt6x+2=0\\\sqrt3 x^{2} \times\sqrt3 x^{2} -\sqrt3x\times\sqrt2x-\sqrt3x\times\sqrt2x+\sqrt2\times\sqrt2=0\\\sqrt3x(\sqrt3x-\sqrt2)-\sqrt2(\sqrt3x-\sqrt2)=0\\(\sqrt3x-\sqrt2)(\sqrt3x-\sqrt2)=0\\x=\sqrt2/\sqrt3\\\text{Therefore the equation has two equal roots; }\sqrt2/\sqrt3

Answered by soumya2301
6

\huge\mathcal{Extra\:  Information }

Solution of a quadratic equation by using quadratic formula : For the quadratic equation a{x}^{2} + bx + c = 0 , its root are given by the quadratic formula , </p><p></p><p>[tex]x =  \frac{ - b +  -  \sqrt{ {b}^{2}  - 4ac} }{2a}

if  \: {b}^{2}  - 4ac &gt; 0 \: or \:  {b}^{2}  - 4ac = 0

Where ,

 {b}^{2}  - 4ac \: is \: called \: the \: discriminant \: of \: the \: equation \: .

\huge\mathcal{Solution}

3 {x}^{2}  - 6x + 2 = 0

Here in this equation .....

a = 3

b = 6

c = 2

Now , by using quadratic equation ....

x =  - b +  -   \frac{  \sqrt{ {b}^{2} - 4ac }  }{2a}

x =  - 6 +  -  \frac{ \sqrt{ {6}^{2}  - 4.3.2} }{2.3}

x =  - 6  +  -  \frac{ \sqrt{36 - 24} }{6}

x =  - 6 +  -  \frac{ \sqrt{12} }{6}

x =  - 6 +  -  \frac{2 \sqrt{3} }{6}

x =  - 6 +  -  \frac{ \sqrt{3} }{3}

Hence ,

 x =  - 6 +  \frac{ \sqrt{3} }{3}

and

x =  - 6 -  \frac{ \sqrt{3} }{3}


Anonymous: Great !
soumya2301: thnx
Similar questions