Math, asked by Thanked, 3 months ago

3x³ + 2x² - 19x + 6 factories using Remainder Theorem.

Class: 10 ICSC board questions. ​

Answers

Answered by dibyangshughosh309
36

Answer:

 \bullet \: \:  \:    \underline\bold{3 \:  factors \:  are  \: (x-2)(x+3)(3x-1)}

Step-by-step explanation:

Given :

  • 3x² + 2x² - 19x + 6

To Find :

  • 3 zeros of it

Solution :

 \text{factors \: of \: 6 :} \\  ± \: 1 \\ ± \: 2 \\ ± \: 3 \\  ± \: 6

Let us assume x = 1

f(x) = 3x {}^{3}  + 2 {x}^{2}  - 19x + 6

 \\ f(1) = 3(1) {}^{3}  + 2 {(1)}^{2}  - 19(1) + 6 \\

 \\  = 3 + 2 - 19 + 6 \\

 \\  = 11 - 19 \\

 \\  =  - 8 \\

 \\  \therefore \:  - 8 ≠0 \\

Let us assume x = -1

 \\ f(x) = 3 {x}^{3}  + 2 {x}^{2}  - 19x + 6 \\

  \\ f( - 1) = 3( - 1) {}^{3}  + 2( - 1) {}^{2}  - 19( - 1) + 6 \\

 \\  =  - 3 + 2 + 19 + 6 \\

 \\  = 27 - 3 \\

 \\  = 24 \\

 \\  \therefore \: 24≠0 \\

Let us assume x = 2

 \\ f(x) = 3x {}^{3}  + 2x {}^{2}  - 19x + 6 \\

 \\ f(2) = 3(2) {}^{3}  + 2(2) {}^{2}  - 19(2) + 6 \\

 \\  = 24 + 8 - 38 + 6 \\

 \\  = 38 - 38 \\

 = 0

 \\  \therefore \: 0 = 0 \\

Hence, x = 2

or, x - 2 = 0

 \\  \tt{x - 2) \: 3x {}^{3}  + 2 {x}^{2}  - 19x + 6 \: (3 {x}^{2}  + 8x - 3} \\  \tt3 {x}^{3}  - 6 {x}^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  -  -  -  -  -  -   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\ \tt 8x {}^{2}  - 19x \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ \tt 8x {}^{2}  - 16x \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  -  -  -  -  -  -   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\   \: -  \tt3x  \:  \: + \:  \:   6 \\  \:   \tt- 3x \:  \:  + \:  \:  6 \\  \:  -  -  -  -  -  -  \\  \:  \:  \:  \tt0 \\

Quotient = 3x² + 8x - 3

 \\  \bf \:  = 3 {x}^{2}  + 8x - 3 \\

 \\  \bf = 3 {x}^{2}  + 9x - x - 3 \\

 \\  \bf = 3x(x + 3) - 1(x + 3) \\

 \\  =  \bf(3x - 1)(x + 3) \\

 \\   \underline{\text{Therefore, 3 factors are (x-2)(x+3)(3x-1)}} \\

Similar questions